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Stress Concentration
in a Nonlinear — Elastic Plane with a Circular Hole

Roumen Raeyv, lliyana Raeva

Pestome: Knacem om mamepuanu uscriedsaH e npedcmaseHama cmamusi € U38ecmeH C
HauMeHosaHUemo XxapMoHu4eH. B pabomama e koHcmpyupaH AuckpameH anzopumbM 3a ornpedersHe Ha
KoeghuyueHma Ha KOHUeHmpauyusi Ha HarnpexeHusima 8 enacmuyHa pasHUHa ¢ Kpb2og omeop. 3adyame e
peweHa ¢ aHarumMu4yHU Memoou.

Knroyoeu dymu: HenuHeliHa meopus Ha enacmudHocmma, MemoO Ha aHanumu4yHomo
rpodbmKkeHue, KOHUeHmpauusl Ha HarpexeHusima

INTRODUCTION AND STATEMENT OF THE PROBLEM

In most of the elastic-static problems, the main subject is that of determining the
stress concentrations in the critical points of the studied solid. It is known that if there’s a
hole in the solid, its critical points lie on the hole’s contour; inside the elastic medium the
stress concentrations decreases. This problem has been solved long ago in the problems
of linear theory plane problems [5, 6]. Although the solution has a substantial
disadvantage. The solution does net depend (for certain reasons) on the elastic properties
of the material, which on its own arouse suspicion about the correspondence between the
obtained theoretical results and reality.

The present article suggests a method for solving the problem for nonlinear elastic
material of harmonic type [3], as the problem of determining the coefficient of stress
concentration in the contour points of an infinite elastic plain containing circular hole when
there’s perfectly solid driving wheel soldered in the hole is examined particularly.

The material named by John [3] harmonic and named by Lure [4],is characterized by
the setting of the function of the plane — strain elastic potential, which is represented in the
following way in the two-dimensional case.
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where 1 and p are Lame’s elastics constants and 6, and &, are the principle stretch

ration. Formally the function W Is described in a way, analogous to the respective function
for Hock’s classical material. But there’s a substantial difference lying in the fact that in the
represented case it appears to nonlinear function of the elastic removals gradients.
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Here u and v are components of the displacement vector. Nonlinear representation of the
field of elastic elements by two analytical functions ¢(z) and w(z)in studied area in a result
of (1) and (2).
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1 In the case of a plane deformation

C=\34+2u 44 In the case of a general plane strained state )
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In these equations o,, o, 7, are components of the Cauchy stress tensor. To (3) —
(7) we will add the results got in work [2] where the using of the method of analytical
prolongation enables the elastic elements to be represented just by only one piece —wise
analytical function, which turns out to be suitable in solving problems and in doing certain
calculations. We will write down the functional equation and the nonlinear boundary
problem for the case in which on the boundary are known elastic removals only.
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where with (+) is marked the boundary value of the function for z eS™, and with (-) is
marked the boundary value of the function for z €S~. The regions S* and S~ are
determined by the following respective inequalities |z(1 and |zl Constants a, and b are
expressed by the formulae (5).
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The main stress acting at the infinite point is marked with Ny and N, and a is the

angle which the main axis corresponding to N1 forms with the co-ordinate axis 0X. The

function g(t) is defined by the derivatives of the displacement vector components «, and

v, toward the polar angle @. The integrals in (9) are integrals of the type of Cauchy’s. To
these equations we will also add the expressing of l//(z) by the piece — wise analytical
function ¢(z).
oll/z)p'(z) , 1 ¢(z) 1,
v'(z)=2 7o 1), (11)
o°z) o) 2

In(11) o(1/z)=p(1/z).

SOLUTION OF THE PROBLEM
We will solve the problem of determination the concentration coefficient of the stress
when the elastic plane occupies S™ e.g. is an infinite plane with a circular hole and there’s
perfectly solid driving wheel soldered in, which radius R; is equal with R4 of the disk and
stresses. 0" = N,, o, =N,, o, =0, acting in the infinity.
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We will accept Ri=R>=1 for convenience in calculating. The functional equation (8)
for the so formulated problem takes the descriptions:

£ “(2) 1 o (dt__ pa | b if |21 (12)
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We will determine the coefficient of stress concentration at the points z=+1. If we
solve the problem concerning sufficiently limited area of these points then equation (12),
will an acceptable approach to accuracy, can be substituted by the following approximate
analogue.
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The smaller radius of the studied areas the more precise substitution. Equation (13) has a
precise solution

o (&)=l -2E8 2 it (14)
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For the piece — wise analytical function go(z) , after solving the nonlinear boundary problem
(9) we get
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Where A= |a, + bo (16)
U

After substituting (15) in (11) and solving the problem for N1 =0, N> = N we will get for go(z)
and y(z) concerning |z))1.
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These results and the equations (3) - (7) give the solution to the studied problem.

Concretely, for the contour stress 69 (in point coordinates) we get
GO 2EN 2N { N }1
42+ 1)
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We got a precise formula expressing 66 Value at the point z=+1 . As it's known [5]
analogous problem from the classical elastic theory
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If we set [z’:i and y:ﬁ, then for the different values of B and yfor the coefficient of
H H

stress concentration

00
K= N and K. (20)
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We get
... 102 0.4 0.6 0.8 1 Lin. Th.
0.25 -0.0255 |-0.0260 |-0.0268 - 0.0271 -0.0284 | 0.0231
1 -0.2564 |-0.2632 |-0.2703 -0.2778 -0.2941 |0
1.5 -0.4663 | -0.4787 |-0.4945 -0.5113 -0.5488 | -0.0333
SUMMARY

From the data in the schedule it's seen that the deflection from the classical solution
in approximately title and that's because of the contour invariability in the process of
deformation.

Following the described method we can find out the value of the coefficient of stress
concentration at an arbitrary point of the contour of the area and we can get the full picture
of the distribution of stress concentrations.
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