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An Alternative Way of Calculating Uncertainty
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Pe3tome: B doknada ca pasanedaHu OCHOBHUME KOHUenuyuu, Ha 6azama, Ha koumo ca uszpadeHu
HSIKOU om cbljecmeysawjume memoodu 3a u3MepeaHe Ha pasmuma (HemoyHa) uHgpopmayus. HanpaeeH e
Kpambk 0630p Ha Knacuyeckume MepKu 3a HemouyHa uHgopmayusi Ha Hartley u Shannon. PasznedaHu ca
0ea npumepa 3a obobwjasaHe Ha ma3u meopus U npedcmassiHe Ha anmepHamuseH Memod 3a uamepsaHe
Ha HeonpedeneHa UHopMayusi.

Knrouoeu dymu: pasmumu MHOXeCmea, HemoyYHa UHGhopMauyusi, MepKu 3a UHgopmayusi

INTRODUCTION

The question of how measure vagueness or fuzziness has been one of the issues
associate with the development of the theory of fuzzy sets. In general, a measure of
fuzziness is a function f: P(X) > R where P(X) denotes the set of all fuzzy subset A of
X. That is, the function f assigns a value f(A) to each fuzzy subset A .

In order to quality as a meaningful measure of fuzziness, f must satisfy certain
axiomatic requirements. Although not necessary unique, these requirements must fully
capture the meaning of an intuitively acceptable characterization of the concept degree of
fuzziness [1].

MEASURE OF FUZZINESS
Several measure of fuzziness have been proposed in the literature. [1]. One of them,
perhaps the best known, is based on the following concepts:
1. The sharpness relation A< B is defined by:

w1, ()< py(x)  for IL[B(x)S% 0
and

(%)= py(x) for M (x) 2% forall xe X. (2)

2. The term maximally fuzzy defined by the membership grade % for all xe X.
This measure of fuzziness is defined by the function:

A == () log, 1,(x))+[1= g, (x)]log,[1 - 1, (x)]) (3)

xeX
Its normalized version, f(A), for which 0 < f(A) <1

Is clearly given by f(A) = f(A)/|X| where |X| denotes the cardinality of the universal

set X.

Another measure of fuzziness, referred to as an index of fuzziness, is defined in
terms of a metric distance (Hamming or Euclidean) of A from any the nearest crisp sets,
say crisp set C, for which  pc(x) =0 if  pa(x)£1/2 and pc(x)=1 if  pa(x)>1/2 .

When the Hamming distance is used, the measure of fuzziness is expected by the
function:

F(A) = |1, (x)— pe(x)| for Euclidean distance: f(4) = (z [ (x) = st (x)]zj (4)

xeX xeX
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REVIEW OF THE FUNDAMENTAL PROPERTIES OF THE CLASSIICAL
MEASURA OF UNCERTAINTY

Two principle measure of uncertainty are recognized to the theory of fuzzy sets[3]
One of them proposed by Hartley is based on the classical set theory. The other
introduced by Shannon is formulated in terms of probability. Both of these measures
pertain to some aspects of ambiguity, as opposed to vagueness or fuzziness. Harley’s
measure pertains to nonspecificity, Shannon’s measure to conflict or dissonance in
evidence.

Both Harley and Shannon introduced their measure for the purpose of meaning
information in term of uncertainty. These measures are often referred to as measures of
information.

Hartley information can also characterized by the following axioms [4]:

A1 (additively) I(M.N) = I(M)+I(N) for all M and M € Z
A2 (monotonic) (M) < I(M+1) for all M € Z
A3 (normalization) 1(2) =1

As expressed by the following uniqueness theorem, the Hartley information is the following
theorem:
Theorem1 Function I(M) = logzN is the only function that satisfied Axiom 1-3.

The Shannon entropy[3], which is a measure of uncertainty and information
formulate in terms of probability theory, is expressed by the function
H(p(x)/x€ X) = - Zp(x).logzp(x) , where p(x)/ x€ X is a probability distribution on a finite

xeX

set X. It is thus a function of the form H: R> [0, ») where R denotes the set of all
probability distribution on finite sets.

AN ALTERNATIVE WAY OF CALCULATING UNCERTAINTY

1. Summary of the Hartley’s method

Information translation can be generalizes to express the constrain among more than
two sets. It is always expressed as the difference between the total information based on
the individual sets and the information. Formally

T(X1, Xa, .oy Xn) = DX )= I(X,, X0, X,) (5)
i=1
We will illustrate the method by example:

Example 1
Consider two variables x and y whose value are taken from sets X= {low, medium, high}
and Y= {1, 2, 3, 4}, respectively. It is known that the variables are constrained by the

Low |1 1 1 1
relation R expressed by the matrix medium  Medium|1 0 1 0] .We can set that the
Hogh |10 1 0 0

low value of x does not constrain y at all, the medium value of x constrains y partially, and
the high value constrains it totally. The following types can be calculates:
I(X) = |ng‘X‘ =10g23=1.6

(

I(X)Y) = |092‘R‘ =10g27=2,8
IXIY)=1(X,Y)-1(Y)=2.8-2=0.8
IYIX)=1(X,Y)=1(X)=28-1.6=1.2

TOGY) =IX)+I(Y) - (X, Y)= 1.6+2-2.8= 0.8
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The information is based on uncertainty associated with a choice among a certain number
of alternatives.

Example 2
Let the set X ={x,,x,,x;,x,} with the probability distribution

p = (p]:.ZS, p,=.5 p;=.125, p4:.125)

be given where p, denotes the probability of x, for all i e N,. Consider the four branching

schemes specified in IV for calculating the uncertainty of this probability distribution.
Employing the branching property of Shannon entropy, the resulting uncertainty should be
the same regardless of which of the branching schemes we use. Let us perform and
compare the four schemes of calculating the uncertainty.

Scheme |.
According to this scheme, we calculate the uncertainty directly:
H(p)=-25log,.25-.5log,.5-2X.125log,.125=.5+.5+.375+.375 = 1.75.

Scheme Il.
H(p):H(pA,p3)+ pAH(pl /' D4sPs /pA)+pBH(p3 /p33p4/}75):

H él +.75H l% +.25H(1,l = .811+.689 +.25=1.75
44 33 22

Scheme Ill.

13 211
H(p)=H(p,,p,)+p,H(p, !, s/ D> p4/pA):H(Z,Z)+.75H(§,g,gj=.81l+.939=1.75

Scheme IV.

H(p):H(plsPA)"'pAH(pz/pA:pB/p4)+p8H(p3/pR»p4/PB):
H[l,éj-+—.75H(z,lj+.25H(l,lj=.8ll+.689+.25=1.75.
44 3°3 2°2

py=1/4  py=1/2 ps=1/8 ps=1/8 Pilpa =113 polpa =23 Plpg =112 pylpg =112

Pa = Pyt Py =304 Pg =Pyt py=1/4

H(p) H (pa Pg)

Scheme | Scheme ll
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—1/4 =213 pylpy=1/6 /py =16
Py P2iPa P3/Pa Pa/Pa py =14 PP, =203 pfpg =112 palpg =112

PelPa = (P3*Pa) [P =113

Pa =Py *P3*ps=3/4 PATDy+Dy +D, =34

H(p1, Pa) H(py,pa)

Schemellll Scheme IV

These results thus demonstrate that the uncertainty can be calculated in terms of any
branching scheme. There are, of course, many additional branching schemes in this example,
each of which can be employed for calculating the uncertainty and each of which must lead to the
same result.
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