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Abstract: The current paper proposes data structures and an algorithm for implementing a general 
mass-spring system on the modern programmable graphics processors. A mass-spring cloth model was 
implemented to run on GPU using the GL shading language and performance of the CPU and GPU were 
compared. Results are given at the end of the paper.  
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INTRODUCTION 
Mass-spring systems have been widely used by researchers in computer graphics for 

modelling different deformable objects. Many scientists have utilised it for cloth modelling 
[1, 2, 5, 7, 8]. The main applications of cloth simulation are in fashion design industry and 
in electronic commerce when customers shop for garments on the web and try them on in 
a virtual booth. However mass-spring models were also exploited for simulating volume 
preservation solids [6] and other elastic deformable objects [8]. 
The graphics processor (GPU) on today's commodity video cards has evolved into an 
extremely powerful and flexible processor [4]. The latest graphics architectures provide 
tremendous memory bandwidth and computational horsepower, with fully programmable 
vertex and pixel processing units that support vector operations up to full IEEE floating 
point precision. High level languages have emerged for graphics hardware, making this 
computational power accessible. Architecturally, GPUs are highly parallel streaming 
processors optimized for vector operations, with both multiple instruction on multiple data 
(MIMD) (vertex) and single instruction on multiple data (SIMD) (pixel) pipelines. Not 
surprisingly, these processors are capable of general-purpose computation beyond the 
graphics applications for which they were designed. 
The aim of this work is to design suitable data structures and an algorithm for 
implementing a general mass-spring model on modern GPUs with the purpose of 
speeding the simulation up. The rest of the paper is organized as follows. The next section 
addresses related work. Section 3 gives some details about using the GPU for general 
purpose computations, section 4 explains our implementation, section 5 presents results of 
the performance tests, and the last section concludes the paper. 

RELATED WORK 
Modelling cloth and other deformable objects 
Methods to model cloth for computer graphics have been investigated for more than 

two decades. Mass-spring particle systems are mainly used [2, 5, 7] while some employ 
finite element methods [8]. Provot [5] introduced a simple mass-spring topology (see 
Figure 1) which is commonly used owing to its efficiency and simplicity. He used linear 
(Hook) springs and applies explicit Euler integration. To account for super-elongation, 
caused by the linear springs, he constrains particles' positions in a post correction step so 
that springs can not extend above a certain threshold: usually 5-10% of their natural 
length, depending on the material properties to be simulated. Repositioning according to 
the length constraint of one spring, however, can lead to over-elongation of other springs 
and may require several iterations of the post correction steps to resolve. Vassilev et al [7] 
improved this by modifying the particles' velocities instead of their positions.  

The elastic model of cloth is a mesh of l×n mass points, each of them being linked to 
its neighbours by massless springs of natural length greater than zero. There are three 
different types of spring:  

• Springs linking vertices [i, j] with [i+1, j], and [i, j] with [i, j+1] are called “stretch” 
springs; 
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• Springs linking vertices [i, j] with [i+1, j+1], and [i+1, j] with [i, j+1] are called “shear” 
springs; 

• Springs linking vertices [i, j] with [i+2, j], and [i, j] with [i, j+2] are called “bend” 
springs. 
As the names indicate, the first type of spring implements resistance to stretching, the 
second – to shearing and the third – to bending. 

 

Bend 

Shear Stretch
 

Fig. 1. Spring types in the cloth model 

Let pij(t), vij(t), aij(t), where i=1,…,l and j=1,…,n, be respectively the positions, 
velocities, and accelerations of the mass points at time t. The system is governed by the 
basic Newton’s law: 

fij = mij aij, (1) 

where mij is the mass of point ij and fij is the sum of all forces applied at point ij. The force 
fij can be divided in two categories. 

Internal forces arise from the tensions of the springs. The overall internal force 
applied at the point ij is a result of the stiffness of all springs linking this point to its 
neighbours: 
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where kijkl is the stiffness of the spring linking ij and kl, and 0

ijkll  is the natural length of the 

same spring.  
The external forces can differ in nature depending on what type of simulation we 

wish to make. The forces most frequently included are: 
• Gravity: gr

ij
f  = mg, where g is the gravity acceleration; 

• Viscous damping: vd

ijf = –Cvd(vi-vj), where Cvd is a damping coefficient, 

• Collision response. 
From the above we may compute the force fij(t) applied to point ij at any time t. The 

fundamental equations of Newtonian dynamics can be integrated over time by a simple 
Euler method: 
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where ∆t is a chosen time step. The Euler Equations 3 are known to be very fast and to 
give good results, provided the time step ∆t is less than the natural period of the system 

KmT π≈
0

, where K is the highest stiffness in the system. Numerous recent works in cloth 

simulation, see for example [1, 2], have shown that improvements in stability are possible 
by using implicit integration. However, for complex garments with mapping of KES 
measurements to the spring properties, explicit integration still proved to be beneficial in 
terms of efficiency in our case [7]. The advantages of Euler integration became particularly 
apparent when computation of the collision detection and response, which require small 
time steps, were taken into consideration. Similar results were also indicated by Volino and 
Magnenat-Thalmann [9]. 
The deformable solids [6] are based on a similar mass-spring system. All surface vertices 
of the solid are connected to each other with regular springs, similar to the stretch springs 
of the cloth. However there are additional "support" springs, which connect the surface 
points to the solid centre. The external forces are similar to those of the cloth model. The 
system of equations is again integrated using the Euler equations (3). 
To summarise most of the mass-spring systems are represented by a grid of mass points 
connected by different types of spring. Usually three arrays are used for storing the forces, 
velocities and positions of each mass point, while the springs are stored in a separate 
array. Each spring is a structure with the following components: indices of the two vertices 
it connects, natural length, and spring stiffness. 
 

Simulation algorithm on the CPU 
One iteration of the simulation algorithm, which is in fact one integration step, is shown 
below. 
Algorithm 1. Mass-spring integration on the CPU 
For each spring 
    Compute internal forces 
End for 
For each mass point 
    Add external forces 
    Compute velocity 
    Do collision detection and response (modify velocity) 
    Compute new position 
End for 
The algorithm has two stages. During the first one the forces acting at the two ends of 
each spring are computed, applying the Hook's law, and added to the forces of the two 
mass points. The second loop goes through each vertex, adds external forces (damping, 
gravity) and computes new velocities and new positions.  
 

GENERAL PURPOSE COMPUTATION ON GPU 
General Purpose computation on GPU (GPGPU) has become a fashionable topic 

among computer graphics people. There is even a web site www.gpgpu.org where history, 
events and news in this area are regularly published. Currently there are two main 
producers of graphics cards that offer programmable GPU – ATI and NVIDIA. 

 
API for GPGPU 
NVIDIA's CUDA (compute unified device architecture) is GeForce 8 Series' API for 

GPGPU programming. As it is not a graphic based API it has several less constraints for 
programs as well as cleaner code. AMD's CTM (close to the metal) is an approach that 
enables low-level efficient GPU programming without any graphics overhead. However, 
these are producer oriented. 
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Usually the GPGPU programmers must use graphics APIs: OpenGL and Direct3D 
(DirectX). OpenGL tends to be favoured in the academic community due to the platform 
portability it allows and due to its extension mechanism, which lets vendors add new 
features to the API as soon as the hardware supports those features (rather than waiting 
on Microsoft to release a new version of DirectX). DirectX/Direct3D, on the other hand, 
tends to be favoured in the computer game industry, where dependence on Windows is 
not a particular impediment.   

A few GPGPU-friendly streaming languages, such as Brook, Sh, and Microsoft's 
Accelerator have been developed to insulate developers from the graphics APIs as much 
as possible. Brook is actively supported in the GPGPU.org Forums. Sh has evolved into a 
commercial effort (with a very unrestricted academic license) called RapidMind, targeting 
multicore CPUs, the Cell and GPUs with one programming model.  

As we wanted our implementation to be more general, platform independent and 
work on both NVIDIA and ATI, it was developed with OpenGL. A good tutorial how to 
program GPUs with OpenGL is published by Göddeke [3]. 

 
Data on the GPU 
One-dimensional arrays are the native CPU data layout. Higher-dimensional arrays 

are typically accessed by offsetting coordinates in a large 1D array. An example for this is 
the row-wise mapping of a two-dimensional array a[i][j] of dimensions M and N into the 
one-dimensional array a[i*M+j], assuming array indices start with zero.  

The native data layout for the GPUs is a two-dimensional array. One- and three-
dimensional arrays are also supported, but they either impose a performance penalty or 
cannot be used directly. Arrays in GPU memory are called textures or texture samplers. 
Texture dimensions are limited on GPUs, the maximum value in each dimension can be 
queried. On modern cards the maximum dimensions are 2048x2048 or 4096x4096. On the 
CPU, we usually use array indices, on the GPU, we will need texture coordinates to 
access values stored in the textures. The GPUs work on four channels of data 
simultaneously corresponding to red, green, blue and alpha (RGBA). However, one can 
use fewer channels: one or three.  

Typically the graphics cards support textures with dimension constrained to powers 
of two, for example 512 by 256, which is usually called a texture2D. Some cards also 
support rectangular textures with arbitrary dimensions. In our case we wanted the system 
to be more general, so we use texture2D. Current graphics cards do not support double 
precision floating point values, so we will use 32 bit IEEE floats stored in the textures. 

In order to do computations on the GPU first one has to create data in the main 
memory, transfer values to textures in the graphics card memory, perform computations 
there and read back results. The usual approach is to create a frame buffer object (FBO) 
in the graphics card, set it as a default render target and draw pixels there. After the 
computations are finished the pixels can be read back from the buffer to the computer 
primary memory. 

Shaders 
The programmes that run on a GPU are called shaders. They are either vertex or 

fragment (pixel) shaders depending on whether they compute vertexes or pixels. In our 
case we are talking about fragment shaders, which perform operations on the textures. 
There is a fundamental difference in the computing model between GPUs and CPUs. If we 
want a vector operation on the CPU we must use a loop. Since the GPUs are parallel 
processors, called vector (array) processors, which can perform a single instruction on 
multiple data, one does not need the loop at all! So, the programmer has to specify only 
the computational kernel inside the loop. The programmable part of the GPU is called a 
fragment pipeline and consists of several parallel processing units. The hardware and 
driver logic however that schedules each data item into the different pipelines is not 
programmable! So from a conceptual point of view, all work on the data items is performed 
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independently, without any influence among the various fragments moving through the 
pipeline. 

There are two programming languages that can be used to write shaders with 
OpenGL. The one is Cg and the second is GL shading language (GLSL). In order to use 
Cg, one has to install additional libraries, while GLSL can be compiled by the driver of the 
graphics card, if it supports OpenGL 2.0 or later version. That is why GLSL was used in 
this work. The difference to the traditional way of programming is that the shaders are 
compiled and linked by the graphics card driver during run time. This makes them more 
difficult to debug and test. 

 
Perform computation on the GPU 
In order to perform computations on the graphics card, a suitable geometry has to be 

rendered. However, we have to first specify that the built-in rendering pipeline has to be 
replaced by the shader we wrote. In OpenGL this is done by a single call 
glUseProgram(myProgram) and after the program does its job, glUseProgram(0)  restores 
defaults.  
Then we specify an orthogonal projection and a viewport. 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); gluOrtho2D(0.0, texSize, 0.0, texSize); 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); glViewport(0, 0, texSize, texSize); 
and render a filled quad, which ensures that our fragment shader is executed for each data 
element we stored in the target texture.  
glPolygonMode(GL_FRONT,GL_FILL); 
glBegin(GL_QUADS); 
    glTexCoord2f(0.0, 0.0);  
    glVertex2f(0.0, 0.0); 
    glTexCoord2f(1.0, 0.0);  
    glVertex2f(texSize, 0.0); 
    glTexCoord2f(1.0, 1.0); 
    glVertex2f(texSize, texSize); 
    glTexCoord2f(0.0, 1.0);  
    glVertex2f(0.0, texSize); 
glEnd(); 

 

DATA AND ALGORITHM ON THE GPU 
 

Data structures 

The mass-spring model very naturally maps into several texture2D, as described in 
the previous section. One very important fact has to be considered, when designing data. 
Usually only one rendering target is allowed. Although multiple rendering targets are 
possible in GLSL, this is not very efficient of all graphics cards. In addition, if a texture is 
set as a rendering target, it is not available for reading. So, in order to compute the new 
velocities and positions in equation 3, one has to store the old values in another texture, 
just for reading. After a computational step, the two textures are swapped, and the reading 
texture becomes a rendering target. This technique is know as "ping-pong" and is often 
used in GPGPU (Göddeke, 2007). The textures have three components corresponding to 
(X, Y, Z) values of the three dimensional points and vectors. 
So, the textures we define are as follows: 

• Two texture2Ds (read/write) for velocities; 
• Two texture2Ds (read/write) for positions; 
• One texture2D for normal vectors of the cloth surface at each cloth vertex. 
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We take advantage of the fact that positions are in the graphics memory to compute 
the normal vectors there, too. That is why another texture2D is defined for the normal 
vectors. 

Now we have to make up a data structure for the springs. The main idea of this work 
is to store information about the springs connected to each mass point. We should also 
impose a suitable constraint on the maximum number of other vertices to which a given 
mass point is connected. For the cloth model this number is 12, while for the deformable 
solid it is 10. To make things more general we suppose that each point is connected to a 
maximum of 16 other points. So, if the textures for velocities, positions and normals have a 
size of (texSize x texSize), we use one more texture, which we call "connectivity texture", 
which is of a size (4*texSize)x(4*texSize). This connectivity matrix consists of 16 smaller 
matrices. Each entry in these 16 matrices has 4 channels (RGBA) and keeps the following 
information of a spring connected to the corresponding vertex: entry.rg – texture 
coordinates of the other spring end point, entry.b – natural length, entry.a – spring 
stiffness. If all channels are equal to -1.0, this means that the entry represents no 
connection. 

 
Algorithm 
The idea of the simulation algorithm on the GPU is that there is no loop that goes for 

each spring. The computation of internal forces is included in the loop for each mass point. 
In this way the forces due to each spring will be computed twice, but as this is done in 
parallel this is more efficient than first to go for each spring. One iteration step of the 
algorithm is shown below. 
Algorithm 2. Mass-spring integration on the GPU 
Rendering 1: 
For each mass point 
    Compute internal forces 
    Add external forces 
    Compute velocity 
    Do collision detection and response (modify velocity) 
End for 
Rendering 2: 
For each mass point 
    Compute new position 
End for 

In fact the "for loops" are not specified in the shader, the operations inside are 
performed in parallel and are scheduled by GPU control unit, which is not programmable. 
As shown in the algorithm each iteration step performs two renderings on the graphics 
card. First the velocity write texture is set as a rendering target. After it is computed the 
read and write textures are swapped. Then the position write texture is set as the current 
rendering target, after that the position textures are swapped. 
The internal forces are computed with the help of the connectivity texture (texCon) as 
shown in algorithm 3 below. 
 
Algorithm 3. Internal forces computation 
ff=vec3(0.0,0.0,0.0); 
vec2 curr=get_current_texcoors(); 
vec3 v = sample_texture2D(texVel, curr).rgb;  
vec3 p = sample_texture2D(texPos, curr).rgb;  
curr*=0.25; 
for (x=0.0;x<1.0;x+=0.25)  
for (y=0.0;y<1.0;y+=0.25){ 
  vec4 con=sample_texture2D(texCon, curr); 
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  if (con.r<-0.5) break; 
  ff+=compute1Force(p,con.rg,con.b,con.a); 
} 

The operation get_current_texcoors() is built-in and retrieves the current texture 
coordinates to be processed, scheduled by the GPU control unit. The operation 
sample_texture2D has the same functionality as array indexing. It retrieves the 4-
coordinate value stored in the specified texture at coordinates (curr.x, curr.y).  

 
RESULTS 
The algorithm was implemented and tested on two machines: 
1) Toshiba Satellite Pro laptop, 1.86 GHz Pentium M70 processor, 1 GB RAM and an 

ATI Mobility Radeon X700 graphics card.  
2) Desktop with 2.8 GHz AMD Athlon 64 Dual processor, 3.5 GB RAM and 

NVIDIA GeForce GTX 260 graphics card. 
The simulation of a square tablecloth on a round table, as shown in Fig. 2, was 

implemented on both CPU and GPU under Windows XP using Microsoft Visual C++, 
OpenGL library and GLSL for programming the GPU. The fact that the sizes of the 
textures have to be a power of two does not limit the generality of the approach and 
arbitrary resolutions of tablecloth vertices are possible. For example, if we set the 
resolution to 48x48 vertices, the selected textures are 64x64, but the vertices are places in 
the upper left corner of the texture. When computing the results, only that part of the 
texture is rendered, which corresponds to the active pixels. The collision detection in this 
particular case is trivial and is done in the object space, but in more complex scenes it can 
be performed in the image space, taking advantage of the GPU as described by Vassilev 
et al.[7]. 

The performance of the two techniques was compared for different resolutions of the 
mass points grid on the tablecloth. The results for the two machines are shown in Table 1. 
As expected the advantage of the GPU is much more evident for higher grid (texture) 
resolutions, because of the SIMD parallel character of the GPU.  
 

 

Fig. 2. Simulation of a tablecloth on a round table 

 
CONCLUSIONS AND FUTURE WORK 
The current paper presented an algorithm and data structures for implementing a 

general mass-spring system on the modern GPU. A cloth model, based on a mass-spring 
system with improved elasticity properties achieved by modification of velocities of cloth 
vertices [7], was implemented on the graphics processor. The rectangular piece of cloth is 
discretised in a two dimensional array of mass points which naturally maps to textures of 
the GPU. The results show that significant increase of the performance is achieved. 
In the future the approach will be also implemented and tested for a more complex 
simulation of garments on virtual characters. 
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Table 1. Comparison of the CPU and GPU performance 

CPU GPU  
Grid 

Resolution 
Time for 

2000 
iterations, s 

Iterations 
per second 

Time for 
2000 

iterations, s 

Iterations 
per second 

Advantage 
of  

GPU, % 

 1 2 1 2 1 2 1 2 1 2 

48 × 48 4.39 3.05 455 656 1.68 0.67 1190 2985 261 455 

64 × 64 7.70 5.53 260 362 2.20 0.67 909 2985 350 825 

96 × 96 18.65 12.30 107 163 4.25 0.67 470 2985 438 1835 

128 × 128 32.86 21.87 61 91 6.90 0.67 290 2985 476 3264 
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