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A Rothe-immersed Interface Method 

for an Elliptic-parabolic Interface Problem 
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Absract. This paper deals with the construction and theoretical analysis of a Rothe’s FE-IIM for a 
model elliptic-parabolic problem.  Numerical experiments are also discussed. 
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INTRODUCTION 
This paper concerns what we term a parabolic-elliptic interface problem. Two –

dimensional problems are investigated in many papers [1-4]. They arise in the study of 
two-dimensional eddy currents [2], in the quasistationary two-dimensional magnetic fields 
[1], surface measurements [3], etc. In the present paper we shall concentrate on the 
following simplified model from the biochemical reactor theory [ 4]: 
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In (1), (2), 
E

µ , 
P

µ ,  are given  positive constants.  

The problem is elliptic in 
E

Ω and parabolic in 
P

Ω  . 

Let introduce the Sobolev space )1,0(1H  and the bilinear form:  
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Let denote by 
PE

)(,,)(,),(,  the inner products respectively in 

)1,(,),0(),1,0( 222 ξξ LLL . 
The equation (1) and (2) could be written in the equivalent form: 
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Using energy methods in [6], one can prove that, if ( ) ( )
PEE

LggLf Ω∪Ω∈Ω∈
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2
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then the problem (1)-(6) has unique solution c  ∈ 1,0(2L ; ))1,0(1H  and   xc ∂∂ / ∈ 1,0(2L ; 

))1,0(1−H . 
In Rothe’s method [6] we apply an y–semidiscretization to approximate the parabolic 

part (1) of the problem by a finite sequence of elliptic interface boundary value problems. 
In Section 2 on each y – level we solve the corresponding elliptic problem by the FE-IIM, 
see [5]. Numerical experiments are discussed in the last section. 

 

Rothe’s FE-IIM  

Let us divide the interval [0,1] by an equidistant mesh of step size M/1=τ . Let ( )xz
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This approximate solution can be extended from its values at the grid points 
j

y to all 

[ ]1,0∈y  by setting 
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We rewrite the equations (9) and (10) in the form 
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Now we are in position to apply to the boundary value problem (15), (12), (13), (14) 
the FE-IIM proposed in [5]. We use an uniform grid ,ihx

i
=  Ni ,...,0=  with  1,0
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and  Nh /1= . The standard linear basis function satisfies: 
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the second jump conditions (13), (14) which implies : 
 



НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2008, том 47, серия 5.1 
 

 - 48 - 

















≤≤

<≤
−

<≤
−

<≤
−

<≤

=

+

+

+

−

−

−

10

,
)(

,

,

0,0

)(

1

1

1

1

1

1

xx

xx
k

xx

xx
k

xx

xxx
h

xx

xx

x

j

j

j

j

j

jj

j

j

j

ξ
ρ

ξφ       

















≤≤

<≤
−

<≤+
−

<≤
−

<≤

=

+

++

+

+

+

+

10

,

,1
)(

,

0,0

)(

2

21

2

1

1

1

xx

xxx
h

xx

xx
k

xx

xx
k

xx

xx

x

j

jj

j

j

j

j

j

j

j ξ
ρ

ξ

φ  

 
 

where:  
P

E
v

µ

µ
ρ = ,   )( j

E

PE
x

v

v
hk −

−

−= ξ
µ

µµ
. 

         Combining results from [5,6] one can prove the following theorem. 
Theorem 1. Suppose that the assumptions for the weak form (7), (8) of problem (1)-

(4) are fulfilled. Then for the Rothe’s FE-IIM solution τ

h
c  the estimate holds   

( )2hCcc
h

+≤− τ
τ , (16) 

where the constant C  is independent of h,τ . 
 
NUMERICAL EXPERIMENTS  

For the numerical experiments we consider the following test problem: 
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The boundary conditions )(),(
43
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0
xc  are founded from the exact solution (17). 

We examine two types of basis functions. First case: The interface ξ  is a grid point, 

i.e. we divide ),0( ξ  in 
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m  is the rate of convergence, calculated by the formula )(log
2
ratiom = . 

Ratio near 4 corresponds to second order of accuracy of the method in space 
direction x. 

In Figure 1 the numerical solution for 640,40,40
21

=== MNN  is presented.  Also, in 
Figure2  the error in maximum norm is depicted. 

 
Second case: The interface ξ  is not a grid point i.e. we   divide (0,1)  N  regular 

intervals. The numerical experiments are given in Table 2. The results show again the 
second order of the method in depends of x variable. The error is bigger on the interface 

).1,0(,6/ ∈= yx π  In figure 3 the error in maximum norm if the interface ξ=x    is not a grid 
point, is presented. 
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Table1. Mesh refinement analysis for the case, when the interface is a grid point. 

N1 N2 M 
∞
|||| er  ratio m 

5 5 10 0.0036 - - 
10 10 40 9.8000e-004 3.6735 1.8771 
20 20 160 2.5338e-004 3.8677 1.9515 
40 40 640 6.3967e-005 3.9611 1.9859 
80 80 2560 1.6030e-005 3.9905 1.9966 
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Figure1. The exact solution 

 
 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-2

0

2

4

6

8

x 10
-5

x

N1=40,N2=40,M=640

y

e
r
r
o
r

 
Figure 2. The error of the numerical solution in maximum norm, when the interface is 

a grid point. 
 

Table 2. Mesh refinement analysis for the case, when the interface is not a grid point. 

N M         
∞
|||| c  ratio       m 

20 1000 0.0452        -         - 
40 1000 0.0098 4.6122 2.2055 
80 1000 0.0022 4.4545 2.1553 
160 1000 5.3602e-004 4.1043 2.0371 
320 1000 1.6400e-004 3.2684 1.7086 
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Figure3. The error of the numerical solution in maximum norm, when the interface is 

not a grid point. 
 
CONCLUSION 
The problem treated here is a simplification in on-space dimension of 2D-curve and 

3D-surface interface problems occurring in physics and engineering. We have employed   
 the Rothe method in combination with the FE-IIM. The experiment show that this 

method is very accurate for 1D problems and very promising for 2D. Progress has been 
made in the 2D-case , but further theoretical work is needed.  
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