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A Rothe-immersed Interface Method

for an Elliptic-parabolic Interface Problem

Ivan Georgiev

Absract. This paper deals with the construction and theoretical analysis of a Rothe’s FE-IIM for a

model elliptic-parabolic problem. Numerical experiments are also discussed.
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INTRODUCTION

This paper concerns what we term a parabolic-elliptic interface problem. Two —

dimensional problems are investigated in many papers [1-4]. They arise in the study of

two-dimensional eddy currents [2], in the quasistationary two-dimensional magnetic fields
[1], surface measurements [3], etc. In the present paper we shall concentrate on the

following simplified model from the biochemical reactor theory [ 4]:
2
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with boundary conditions

c(x,0)=c,(x) , &<x<1,

c(0,y)=g;(»;c(l,y)=g,(»); , 0<y<l,
and interface conditions

[e]ee = (gt 0) = (6= ») =0,
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e =ty (E+9) — 1y (6=,3) =0
[u ax]x,,, Hr— &+ )= #p ™ =)
In (1), (2), &, up, are given positive constants.
The problem is elliptic in ©,and parabolic in Q, .
Let introduce the Sobolev space H'(0,1) and the bilinear form:
5 1
a(e,p) = @@dwﬂj@@dx, pe H'(0)]).
5 Ox dx My £ Ox dx
Let denote by () ()g (G)p the inner products

L)), L(0,8) ,L'(&)).
The equation (1) and (2) could be written in the equivalent form:

(vg—;,m+ﬂ5a<c,¢>+(f(x)c,(p):o Ype H'0)).
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Using energy methods in [6], one can prove that, if fel*(Q,) g,g, €} (Q,UQ,)
then the problem (1)-(6) has unique solution ¢ e I*(0,1; H'(0,])) and dc/dx e L*(0,1;
H'(0,1)).

In Rothe’s method [6] we apply an y—semidiscretization to approximate the parabolic
part (1) of the problem by a finite sequence of elliptic interface boundary value problems.
In Section 2 on each y — level we solve the corresponding elliptic problem by the FE-IIM,
see [5]. Numerical experiments are discussed in the last section.

Rothe’s FE-IIM
Let us divide the interval [0,1] by an equidistant mesh of step size 7 =1/M . Let z,(x)

denote the computed approximation of c(x,ym) at each y- levely, =mz, m=0,1,...,M.
These approximations are defined iteratively by

— tpz, () + f(¥)z, = g (x.3,). x(0,€), )
pl)= 2 ) g () xele) (10)
T

2(0) = ¢ (x) x e (&.1). (1)
with boundary conditions

,(0,,)=g:(»,) ¢, (Ly,) =2, (3,), (12)
and interface conditions

[an]x:§ = C(§+’ym)_c(§_’ym): 0’ (13)

[, =0. (14)
This approximate solution can be extended from its values at the grid points yto all
yelo,1] by setting
¢ (00)= 210+ 5222z, (1) -2, . (x)] o v for j=1...m.
We rewrite the equations (9) and (10) in the form
(8,(x)z,,) +4,(x)z, =7, (), (15)
P00 W el e
— Up, 7 gz(x’ym)-'»;szl(x)

Now we are in position to apply to the boundary value problem (15), (12), (13), (14)
the FE-IIM proposed in [5]. We use an uniform grid x, =ik, i=0,..,N with x, =0,x, =1
and & =1/N. The standard linear basis function satisfies:

¢,-={1’ if i=k

0
N
The numerical solution z/(x) :Zc,qﬁ,.(x), (with unknowns ¢;) is a combination of the

i=0

otherwise.

s

special basis, see [5] . If x; <§<xj+1, then ¢, and ¢, , need to be changed to satisfy
the second jump conditions (13), (14) which implies :
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0, 0Sx<x,7l 0, 0Sx<x/
X=X, X=X,
5 X, Sx<x, 7 x;£x<¢&
X, =X (x=x,,,)
$;(x) = /k . x, <x<§ $a(x) = P p 4, E<x<x,,
X=X X=X
l j; )7 Ssx<x, j+2h > Xjg SX <X,
0 X, <x<1 0 X, Sx<1
where: p:ﬂ, k=h-tHe"Er ——(f-x)).
Hp VHE

Combining results from [5,6] one can prove the following theorem.
Theorem 1. Suppose that the assumptions for the weak form (7), (8) of problem (1)-
(4) are fulfilled. Then for the Rothe’s FE-IIM solution ¢, the estimate holds
le; — | < cle+#?). (16)
where the constant C is independent of z,4.

NUMERICAL EXPERIMENTS
For the numerical experiments we consider the following test problem:

o%c
Heos +fe=g(x,y), in  Q, =(0,2)x(0,1),
X 6

oc d’c
5 ~Hp 5 o’
where we chose u, =1, u, =3, f=1, g,(x,y) =g,(x,y) =0, and an exact solution
c(x,y) = {cos(zz'/6)exp(7r/6 fy x), 0<x<7/6,0<y< 1
cos(x)exp(v/3y) 0<x<7z/6,0<y<l

The boundary conditions g,(»), g,(v), and ¢,(x) are founded from the exact solution (17).
We examine two types of basis functions. First case: The interface & is a grid point,

i.e. we divide (0,¢) in N, regular subintervals with mesh size 4 =¢&/N, and (1) in N,.
The numerical experiments are presented in Table 1,  where

—g,(xy), in Qp:(%,l)x(o,l),

(17)

. . : o ey
ler ||, = max(|c(x,,y,)—cL(i,7)|) is the error in maximum norm, ratio is ratio = ﬁ

€N, 2n, Il
m is the rate of convergence, calculated by the formula m = log, (ratio).

Ratio near 4 corresponds to second order of accuracy of the method in space
direction x.

In Figure 1 the numerical solution for N, =40, N, =40, M = 640 is presented. Also, in
Figure2 the error in maximum norm is depicted.

Second case: The interface & is not a grid point i.e. we divide (0,1) N regular

intervals. The numerical experiments are given in Table 2. The results show again the
second order of the method in depends of x variable. The error is bigger on the interface
x=7/6,y € (0,]). Infigure 3 the error in maximum norm if the interface x =¢& is not a grid
point, is presented.
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Table1. Mesh refinement analysis for the case, when the interface is a grid point.

N1 N2 M Ier |, ratio m
5 5 10 0.0036 - -
10 10 40 9.8000e-004 3.6735 1.8771
20 20 160 2.5338e-004 3.8677 1.9515
40 40 640 6.3967e-005 3.9611 1.9859
80 80 2560 1.6030e-005 3.9905 1.9966

exact solution

error

Figure1. The exact solution

N1=40,N2=40,M=640

Figure 2. The error of the numerical solution in maximum norm, when the interface is

a grid point.

Table 2. Mesh refinement analysis for the case, when the interface is not a grid point.

N M el ratio m
20 1000 0.0452 - -
40 1000 0.0098 4.6122 2.2055
80 1000 0.0022 4.4545 2.1553
160 1000 5.3602e-004 4.1043 2.0371
320 1000 1.6400e-004 3.2684 1.7086
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N=80,M=1000

error
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Figure3. The error of the numerical solution in maximum norm, when the interface is
not a grid point.

CONCLUSION

The problem treated here is a simplification in on-space dimension of 2D-curve and
3D-surface interface problems occurring in physics and engineering. We have employed
the Rothe method in combination with the FE-IIM. The experiment show that this

method is very accurate for 1D problems and very promising for 2D. Progress has been
made in the 2D-case , but further theoretical work is needed.
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