A Rothe-immersed Interface Method for an Elliptic-parabolic Interface Problem

Ivan Georgiev

Abstract

Absract. This paper deals with the construction and theoretical analysis of a Rothe's FE-IIM for a model elliptic-parabolic problem. Numerical experiments are also discussed.

Key words: elliptic-parabolic problems, interface problems, FEM.

INTRODUCTION

This paper concerns what we term a parabolic-elliptic interface problem. Two dimensional problems are investigated in many papers [1-4]. They arise in the study of two-dimensional eddy currents [2], in the quasistationary two-dimensional magnetic fields [1], surface measurements [3], etc. In the present paper we shall concentrate on the following simplified model from the biochemical reactor theory [4]:

$$
\begin{align*}
& -\mu_{E} \frac{\partial^{2} c}{\partial x^{2}}+f(x) c=g_{1}(x, y) \text { in } \Omega_{E}=(0, \xi) \times(0,1) \tag{1}\\
& v \frac{\partial c}{\partial y}-\mu_{P} \frac{\partial^{2} c}{\partial x^{2}}=g_{2}(x, y) \text { in } \Omega_{P}=(\xi, 1) \times(0,1) \tag{2}
\end{align*}
$$

with boundary conditions

$$
\begin{align*}
& c(x, 0)=c_{0}(x), \quad \xi<x<1, \tag{3}\\
& c(0, y)=g_{3}(y) ; c(1, y)=g_{4}(y) ;, \quad 0<y<1, \tag{4}
\end{align*}
$$

and interface conditions

$$
\begin{align*}
& {[c]_{x=\xi}=c(\xi+, y)-c(\xi-, y)=0,} \tag{5}\\
& {\left[\mu \frac{\partial c}{\partial x}\right]_{x=\xi}=\mu_{E} \frac{\partial c}{\partial x}(\xi+, y)-\mu_{P} \frac{\partial c}{\partial x}(\xi-, y)=0 .} \tag{6}
\end{align*}
$$

In (1), (2), μ_{E}, μ_{P}, are given positive constants.
The problem is elliptic in Ω_{E} and parabolic in Ω_{P}.
Let introduce the Sobolev space $H^{1}(0,1)$ and the bilinear form:

$$
\begin{equation*}
a(c, \varphi)=\int_{0}^{\xi} \frac{\partial c}{\partial x} \frac{d \varphi}{d x} d x+\frac{\mu_{P}}{\mu_{E}} \int_{\xi}^{1} \frac{\partial c}{\partial x} \frac{d \varphi}{d x} d x, \varphi \in H^{1}(0,1) . \tag{7}
\end{equation*}
$$

Let denote by $(),,(,)_{E},(,)_{P}$ the inner products respectively in $L^{2}(0,1), L^{2}(0, \xi), L^{2}(\xi, 1)$.

The equation (1) and (2) could be written in the equivalent form:

$$
\begin{equation*}
\left(v \frac{\partial c}{\partial y}, \varphi\right)+\mu_{E} a(c, \varphi)+(f(x) c, \varphi)=0 \quad \forall \varphi \in H^{1}(0,1) . \tag{8}
\end{equation*}
$$

Using energy methods in [6], one can prove that, if $f \in L^{2}\left(\Omega_{E}\right), g_{1}, g_{2} \in L^{2}\left(\Omega_{E} \cup \Omega_{P}\right)$ then the problem (1)-(6) has unique solution $c \in L^{2}\left(0,1 ; H^{1}(0,1)\right)$ and $\partial c / \partial x \in L^{2}(0,1$; $\left.H^{-1}(0,1)\right)$.

In Rothe's method [6] we apply an y-semidiscretization to approximate the parabolic part (1) of the problem by a finite sequence of elliptic interface boundary value problems. In Section 2 on each y - level we solve the corresponding elliptic problem by the FE-IIM, see [5]. Numerical experiments are discussed in the last section.

Rothe's FE-IIM

Let us divide the interval [0,1] by an equidistant mesh of step size $\tau=1 / M$. Let $z_{m}(x)$ denote the computed approximation of $c\left(x, y_{m}\right)$ at each y-level $y_{m}=m \tau, m=0,1, \ldots, M$. These approximations are defined iteratively by

$$
\begin{align*}
& -\mu_{E} z_{m}^{\prime \prime}(x)+f(x) z_{m}=g_{1}\left(x, y_{m}\right), \quad x \in(0, \xi) \tag{9}\\
& v \frac{z_{m}(x)-z_{m-1}(x)}{\tau}-\mu_{P} z_{m}^{\prime \prime}(x)=g_{2}\left(x, y_{m}\right), \quad x \in(\xi, 1) \tag{10}\\
& z_{0}(x)=c_{0}(x), x \in(\xi, 1) . \tag{11}
\end{align*}
$$

with boundary conditions

$$
\begin{equation*}
c_{m}\left(0, y_{m}\right)=g_{3}\left(y_{m}\right), c_{m}\left(1, y_{m}\right)=g_{4}\left(y_{m}\right) \tag{12}
\end{equation*}
$$

and interface conditions

$$
\begin{align*}
& {\left[z_{m}\right]_{x=\xi}=c\left(\xi+, y_{m}\right)-c\left(\xi-, y_{m}\right)=0} \tag{13}\\
& {\left[\mu z^{\prime}\right]_{x=\xi}=0} \tag{14}
\end{align*}
$$

This approximate solution can be extended from its values at the grid points y_{j} to all $y \in[0,1]$ by setting

$$
c^{\tau}(x, y)=z_{m-1}(x)+\frac{y-y_{m-1}}{\tau}\left[z_{m}(x)-z_{m-1}(x)\right] \quad \text { on } \quad\left[y_{j-1}, y_{j}\right] \text { for } \quad j=1, \ldots, M
$$

We rewrite the equations (9) and (10) in the form

$$
\begin{align*}
& \left(\beta_{m}(x) z_{m}^{\prime \prime}\right)+q_{m}(x) z_{m}=r_{m}(x), \tag{15}\\
& \beta_{m}(x)=\left\{\begin{array}{l}
-\mu_{E}, \\
-\mu_{P},
\end{array} \quad q_{m}(x)=\left\{\begin{array}{l}
f(x), \\
\frac{v}{\tau},
\end{array} \quad r_{m}(x)=\left\{\begin{array}{c}
g_{1}\left(x, y_{m}\right), \\
g_{2}\left(x, y_{m}\right)+\frac{v}{\tau} z_{m-1}(x)
\end{array}\right.\right.\right.
\end{align*}
$$

Now we are in position to apply to the boundary value problem (15), (12), (13), (14) the FE-IIM proposed in [5]. We use an uniform grid $x_{i}=i h, i=0, \ldots, N$ with $x_{0}=0, x_{N}=1$ and $h=1 / N$. The standard linear basis function satisfies:
$\phi_{i}= \begin{cases}1, & \text { if } \quad i=k \\ 0, & \text { otherwise } .\end{cases}$
The numerical solution $z_{m}^{h}(x)=\sum_{i=0}^{N} c_{i} \phi_{i}(x)$, (with unknowns c_{i}) is a combination of the special basis, see [5]. If $x_{j}<\xi<x_{j+1}$, then ϕ_{j} and ϕ_{j+1} need to be changed to satisfy the second jump conditions (13), (14) which implies:

$$
\phi_{j}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x<x_{j-1} \\
\frac{x-x_{j-1}}{h}, & x_{j-1} \leq x<x_{j} \\
\frac{x_{j}-x}{k}, & x_{j} \leq x<\xi \\
\frac{\rho\left(x_{j+1}-x\right)}{k}, & \xi \leq x<x_{j+1} \\
0 & x_{j+1} \leq x \leq 1
\end{array} \quad \phi_{j+1}(x)=\left\{\begin{array}{cc}
0, & 0 \leq x<x_{j} \\
\frac{x-x_{j}}{k}, & x_{j} \leq x<\xi \\
\frac{\rho\left(x-x_{j+1}\right)}{k}+1, & \xi \leq x<x_{j+1} \\
\frac{x_{j+2}-x}{h}, & x_{j+1} \leq x<x_{j+2} \\
0 & x_{j+2} \leq x \leq 1
\end{array}\right.\right.
$$

where:

$$
\rho=\frac{v \mu_{E}}{\mu_{P}}, \quad k=h-\frac{v \mu_{E}-\mu_{P}}{v \mu_{E}}\left(\xi-x_{j}\right) .
$$

Combining results from [5,6] one can prove the following theorem.
Theorem 1. Suppose that the assumptions for the weak form (7), (8) of problem (1)(4) are fulfilled. Then for the Rothe's FE-IIM solution c_{h}^{τ} the estimate holds

$$
\begin{equation*}
\left\|c_{h}^{\tau}-c\right\| \leq C\left(\tau+h^{2}\right), \tag{16}
\end{equation*}
$$

where the constant C is independent of τ, h.

NUMERICAL EXPERIMENTS

For the numerical experiments we consider the following test problem:

$$
\begin{array}{lll}
-\mu_{E} \frac{\partial^{2} c}{\partial x^{2}}+f c=g_{1}(x, y), & \text { in } & \Omega_{\mathrm{E}}=\left(0, \frac{\pi}{6}\right) \times(0,1), \\
\frac{\partial c}{\partial y}-\mu_{P} \frac{\partial^{2} c}{\partial x^{2}}=g_{2}(x, y), & \text { in } & \Omega_{P}=\left(\frac{\pi}{6}, 1\right) \times(0,1),
\end{array}
$$

where we chose $\mu_{E}=1, \quad \mu_{P}=\sqrt{3}, \quad f=1, g_{1}(x, y)=g_{2}(x, y)=0$, and an exact solution

$$
c(x, y)=\left\{\begin{array}{c}
\cos (\pi / 6) \exp (\pi / 6-\sqrt{3} y-x), \quad 0 \leq x \leq \pi / 6,0 \leq y \leq 1 \tag{17}\\
\cos (x) \exp (\sqrt{3} y) \quad 0 \leq x \leq \pi / 6,0 \leq y \leq 1
\end{array} .\right.
$$

The boundary conditions $g_{3}(y), g_{4}(y)$, and $c_{0}(x)$ are founded from the exact solution (17).
We examine two types of basis functions. First case: The interface ξ is a grid point, i.e. we divide $(0, \xi)$ in N_{1} regular subintervals with mesh size $h_{1}=\xi / N_{1}$ and $(\xi, 1)$ in N_{2}.

The numerical experiments are presented in Table 1, where $\|e r\|_{\infty}=\max \left(\left|c\left(x_{i}, y_{i}\right)-c_{h}^{\tau}(i, j)\right|\right)$ is the error in maximum norm, ratio is ratio $=\frac{\left\|e r_{N_{1}, N_{2}}^{M}\right\|_{\infty}}{\left\|e r_{2 N_{1}, 2 N_{2}}^{4 M}\right\|_{\infty}}$, m is the rate of convergence, calculated by the formula $m=\log _{2}$ (ratio).

Ratio near 4 corresponds to second order of accuracy of the method in space direction x .

In Figure 1 the numerical solution for $N_{1}=40, N_{2}=40, M=640$ is presented. Also, in Figure2 the error in maximum norm is depicted.

Second case: The interface ξ is not a grid point i.e. we divide $(0,1) \quad N$ regular intervals. The numerical experiments are given in Table 2. The results show again the second order of the method in depends of x variable. The error is bigger on the interface $x=\pi / 6, y \in(0,1)$. In figure 3 the error in maximum norm if the interface $x=\xi$ is not a grid point, is presented.

Table1. Mesh refinement analysis for the case, when the interface is a grid point.

N 1	N 2	M	$\\|e r\\|_{\infty}$	ratio	m
5	5	10	0.0036	-	-
10	10	40	$9.8000 \mathrm{e}-004$	3.6735	1.8771
20	20	160	$2.5338 \mathrm{e}-004$	3.8677	1.9515
40	40	640	$6.3967 \mathrm{e}-005$	3.9611	1.9859
80	80	2560	$1.6030 \mathrm{e}-005$	3.9905	1.9966

exact solution

Figure1. The exact solution

Figure 2. The error of the numerical solution in maximum norm, when the interface is a grid point.

Table 2. Mesh refinement analysis for the case, when the interface is not a grid point.

N	M	$\\|c\\|_{\infty}$	ratio	m
20	1000	0.0452	-	-
40	1000	0.0098	4.6122	2.2055
80	1000	0.0022	4.4545	2.1553
160	1000	$5.3602 \mathrm{e}-004$	4.1043	2.0371
320	1000	$1.6400 \mathrm{e}-004$	3.2684	1.7086

Figure3. The error of the numerical solution in maximum norm, when the interface is not a grid point.

CONCLUSION

The problem treated here is a simplification in on-space dimension of 2D-curve and 3D-surface interface problems occurring in physics and engineering. We have employed
the Rothe method in combination with the FE-IIM. The experiment show that this method is very accurate for 1D problems and very promising for 2D. Progress has been made in the 2D-case, but further theoretical work is needed.

Acknowledgements

This work was supported in part by National Science Fund of Bulgaria under contract HS-MI-106/2005 and partially by the project 2008-FPNO-05 of RU.

REFERENCE

[1] Al-Droubi A., M. Renardy Energy methods for a parabolic-hyperbolic interface problem arising in electromagnetism. J. Appl. Math. Phys. , 1988, 39, 931-936.
[2] Al-Droubi A. A two-dimensional eddy current problem. Ph. D. thesis, CarnegieMellon University, Pittsburgh, 1987.
[3] Fruhauf F., B. Gebaner, O. Scherzer. Detecting interfaces in parabolic-elliptic problem from surface measurements. SIAM J. Numer. Anal., 2008, 45/2, 810-836.
[4] Henry J. Optimization of fermentation reactor with non-moving layer. Num. Meth. in Appl. Math., Science, Siberian Branch, 1982, 163-173.
[5] Li Z. The immersed interface method using a finite element formulation. Appl. Num. Math., 1998, 27/3, 253-267.
[6] Rektorys K. The method of discretization in time. SNTL, Prague, 1982.

За контакти:

Иван Радославов Георгиев, Катедра "Числени методи и статистика", Русенски университет "Ангел Кънчев", тел.: 082-888 725, e-mail: irgeorgiev@.ru.acad.bg

Докладът е рецензиран.

