Използване на MS Excel в обучението по статистика

Красимира Костадинова

Abstract: A Practical training of Statistics by MS Excel: This paper presents an application of Regression analysis in teaching statistics with MS Excel.

Key words: Regression Analysis, Statistics, MS Excel.

въведение

Обучението по Статистика изисква осъзнаването на голямо количество формули и статистически методи. То не е достатъчно ефективно без илюстрации на тяхното приложение. От своя страна приложението е свързано с много по обем изчислителни процедури. Това налага използването на подходящ софтуер.

Една от най-достъпните софтуерни среди е MS Office, в частност MS Excel. Тази софтуерна среда (MS Excel) позволява да бъдат представени теми като многомерен регресионен анализ, многомерен дисперсионен анализ и клъстърен анализ, които са особени важни в приложението на маркетинга, социологически и политически проучвания.

Масовото познаване и използване на продукта MS Office (MS Excel) дава възможност на всеки потребител лесно да продължи наученото в училище и да развие знанията си посредством използването на статистика в Excel.

Тук показваме как с помощта на MS Excel може да се реализира обучението по темата многомерен регресионен анализ (РА).

ИЗЛОЖЕНИЕ

Дефиниция (*PA*). РА служи за моделиране формата на зависимостта на един зависим (резултативен) признак от един или няколко фактор-признаци, като не се отчита, че изменението на разглежданите величини може да се дължи на външни, невключени в модела признаци.

Формата, свързваща резултативния признак с фактора-признак (или факторпризнаците) се нарича уравнение на регресия.

Ако фактор-признака е един, говорим за еднофакторен РА. А ако факторпризнака е повече от един – за многофакторен (многомерен) РА.

Ще покажем как се извършва многофакторен линеен РА, в частност при два фактора. При един фактор и с повече от два фактора се прави аналогично.

Уравнението на регресия при линейния многофакторен РА има вида:

$$y = a_0 + a_1 x_1 + a_2 x_2 + \ldots + a_m x_m,$$

(1)

където

у е теоретичната (оценъчна) стойност на резултативния признак;

x_i, *i*= 1, ..., *m* са измерените стойности на фактор-признаците;

a, *i*= 0, 1, ..., *m* са коефициентите в уравнението на регресия.

Пример. Наблюдавани са 10 статистически единици (Табл. 1). Нека *X_i, i= 1, 2* и У са икономически показатели, като У ще наречем резултативен (зависим) признак, а *X_i, i= 1, 2* – фактор-признаци. По тези данни да се определят параметрите в уравнението на линейна регресия и да се направи РА.

Табл. 1

Î	Α	В	C	D
1	№ на набюдаваната величина	зависима величина Ү	фактор- признак Х ₁	фактор- признак Х ₂
2	1	150	138	400
3				
11	10	63	51	165

В този случай, уравнението на линейна регресия има вида:

 $y = a_0 + a_1 x_1 + a_2 x_2.$

(2)

За да определим коефициентите в уравнението на линейна регресия използваме менюто *Tools* и подменюто *Data Analysis*, откъдето избираме Regression и след това бутона *OK*. От отворелия се вече диалогов прозорец задаваме параметрите (Фиг. 1):

1. В полето *Input Y Range* – въвеждаме областта от клетки със стойностите на резултативния признак. В примера чрез селектиране въвеждаме *\$B\$1:\$B\$11*.

2. В полето *Input X Range* – въвеждаме областта от клетки със стойностите на фактор-признаците. В примера чрез селектиране въвеждаме *\$C\$1:\$D\$11*.

3. Ако в горните полета от области сме въвели и етикетите на стойностите, слагаме отметка в полето *Labels*.

4. В раздела Output options избираме мястото, където искаме да видим изходните данни. Ако искаме например изходните данни да са в същия работен лист избираме опцията Output Range и в полето вдясно указваме горната лява клетка на изходните данни, напр. \$*A*\$13.

5. В раздела Residuals слагаме отметки на Residuals, Standardized Residuals, Residual Plots и Line Fit Plots, ако искаме да видим съответно остатъците от регресията, стандартизираните остатъци от регресията, графиките на зависимостта между фактор-признаците и остатъците от регресията и между фактор-признаците и резултативният (зависим) признак.

6. В раздела Normal Probability слагаме отметка на Normal Probability Plots, за да се изведе на работния лист точната графика на зависимостта между съответните квантили на нормалното разпределение и предсказаните стойности на наблюдавания признак Y.

egression		?
Input Input ¥ Range: Input ¥ Range: Ir Labels Confidence Level 9	\$B\$1:\$B\$11 \$C\$1:\$D\$11 Constant is Zero 5 %	OK Cancel <u>H</u> elp
Output options	\$A\$13 <u></u>	
Residuals Residuals Standardized Residuals Normal Probability Normal Probability Plots	 ✓ Residual Plots ✓ Line Fit Plots 	

Фиг. 1

Избираме бутона *OK* и на екрана от клетка *A13* се появяват резултатите от PA. Да разгледаме първо таблица *Summary Output* (Табл. 2):

Табл. 2

	A	В
13	SUMMARY OUTPUT	
14		
15	Regression Statis	stics
16	Multiple R	0,99
17	R Square	0,99
18	Adjusted R Square	0,98
19	Standard Error	7,72
20	Observations	10

Резултатите от тази таблица съответстват на следните статистически величини:

- в клетка *B16* (*Multiple R*) е изобразен корелационният коефициент *R* на Пирсън, който се изчислява по формулата $R = \sqrt{1 - \frac{S_O^2}{S_\tau^2}} = \frac{S_R}{S_\tau}$, където S_O^2 е

дисперсията за остатъка от регресията. А S_T^2 е сумата от дисперсиите за регресията и за остатъка от регресията, т.е. $S_T^2 = S_P^2 + S_Q^2$.

- в клетка *B17* (*R Square*) се намира коефициентът на детерминация *R*². Това е частта от дисперсията на Y, изразена чрез X₁ и X₂;

- в клетка B18 (Adjusted R Square) е изобразен изгладеният коефициент на детерминация R;

- в клетка B19 (Standard Error) е изобразена общата стандартната грешка на

модела, изчислена по формулата $S_o = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n-2}}$, където \hat{y}_i са теоретичните

стойности, а у_i са експерименталните (емпиричните) данни.

- в клетка B20 (Observations) е указан броят на наблюденията.

Следващите две таблици (Табл. 3) са под общото название ANOVA (съкращение от *analysis of variance*), което в превод означава Дисперсионен анализ, който се използва за проверка за значимост на коефициента на детерминация R^2 .

Табл. 3

									14031. 0
	Α	В	С	D	E	F	G	Н	I
22	ANOVA								
23		df	SS	MS	F	Significance F			
24	Regression	2	28279,29	14139,64	237,01	3,71772E-07	·0		
25	Residual	7	417,61	59,66					
26	Total	9	28696,90						
27									
28		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
29	Intercept	6,08	5,42	1,12	0,30	-6,74	18,89	-6,74	18,89
	фактор-								
30	признак Х1	0,73	0,10	7,03	0,0002	0,48	0,97	0,48	0,97
	фактор-								
31	признак Х2	0,15	0,04	4,09	0,005	0,06	0,23	0,06	0,23

Стълбовете в първата таблица на табл. 3 могат да се обобщат в следната таблица (Табл. 4): Табл 4

	Степени на свобода <i>df</i>	Сума от квадратични отклонения SS	Дисперсия <i>MS</i>	<i>F</i> – кри- терий	Равнище на значимост Significance F
Регресия	т	$SS_{R}^{2} = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y}_{n})^{2}$	$S_R^2 = \frac{SS_R^2}{m}$	$F_{emn} = \frac{S_R^2}{S_o^2}$	=FDIST(F _{κp.} ;df(R egression); df(Residual))

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2009. том 48. серия 6.1

Остатък (отклоне- ние) от регресия-та	n – m - 1	$SS_{o}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$	$S_o^2 = \frac{SS_o^2}{n - m - 1}$	
Общо:	n - 1	$SS_{T}^{2} = \sum_{i=1}^{n} (y_{i} - \overline{y}_{n})^{2}$ MTM $SS_{T}^{2} = SS_{R}^{2} + SS_{o}^{2}$	$S_T^2 = \frac{SS_T^2}{n-1}$	

В табл. 4 означенията са:

m – броя на фактор-признаците в уравнението (1) на линейна регресия;

n - броят на наблюдаваните величини;

у., - средната стойност от експерименталните данни.

Стълбовете във втората таблица на табл. 3 се интерпретират по следния начин:

- в стълб Coefficients (клетки B29, B30 и B31) са разположени стойностите на коефициентите a_i , i = 0, 1, 2 от уравнението (2).

В случая уравнението на линейна регресия има вида

 $y = 6.08 + 0.73x_1 + 0.15x_2$

(3)

с което се изразява зависимостта на величината У от фактор-признаците X₁ и X₂;

- в стълб Standard Error (клетки C29, C30 и C31) са разположени стандартните грешки на коефициентите a_i , i = 0, 1, 2 в уравнението (2);

- в стълб t Stat (клетки D29, D30 и D31) са изобразени съответните стойности на t – статистика по формулата $t_{Stat} = \frac{Coefficient}{Standard Error};$

- в стълб P value (клетки E29, E30 и E31) е изчислена стойността на равнището на значимост, което съответства на съответната стойност от стълб t Stat. Изчислява се с помощта на функцията

$$=TDIST(t_{Stat}; n - m - 1; 2);$$

- в стълбове Lower 95% и Upper 95% (и съответните им Lower 95.0% и Upper 95.0%) са изчислени съответно долната и горната граница на доверителния интервал (ДИ) съответно за коефициентите a_i, i = 0, 1, 2 от уравнението (2). Границите на доверителния интервал се изчисляват по формулата

(Coefficent – Standard Error^{*} $t_{\kappa\rho}$; Coefficent + Standard Error^{*} $t_{\kappa\rho}$), където стойността на t – критерия t_{ко} се изчислява чрез формулата

$$TINV(0.05; n - m - 1).$$

Забележка: Стойностите за ДИ в стълбовете Lower 95.0% и Upper 95.0% са същите като стойностите в стълбовете Lower 95% и Upper 95%, т.к. сме приели указаното по подразбиране ниво на доверие 0,05, т.е. 95% ДИ.

Следват още две таблици – Residual Output и Probability Output (Табл. 5).

Табл. 5

	A	В	С	D	Е	F	G
35	RESIDUAL O	UTPUT				PROBABIL	ITY OUTPUT
36							
37	Observation	Predicted зависима величина Y	Residuals	Standard Residuals		Percentile	зависима величина Ү
38	1	164,53	-14,53	-2,13		5	28
39	2	176,11	3,89	0,57		15	55
40							
46	9	101,28	-0,28	-0,04		85	180
47	10	67,14	-4.14	-0.61		95	200

Таблица Residual Output показва по колони съответно номерата на наблюдаваните обекти, теоретичната (оценъчна) стойност на зависимия признак ŷ,

остатъчните стойности $y_i - \hat{y}$ и стандартизираните остатъци от регресията.

В таблица *Probability Output* са показани процентите на ДИ и съответните им емпирични стойности Y.

Излизат и няколко графики. Две от тях са графиките на зависимостта между фактор-признаците и остатъците от регресията (*Residual Plots*), които без MS Excel е трудно да се анализират.

След това се прави анализ на получената таблица, като се прави проверка за адекватност на построеното уравнение на линейна регресия на няколко етапа.

Първи етап: Стойността на коефициента на детерминация R^2 =0.99 (клетка В17 в табл. 2) показва, че 99% от общата вариация на резултативния признак се обяснява с фактор-признаците X_1 и X_2 . Това означава, че избраните фактори X_1 и X_2 съществено влияят на резултативния признак Y, т.е. това потвърждава за правилността на техните включвания в построения модел. Изчисленото равнище на значимост (клетка *F24*) потвърждава значимостта на коефициента R^2 .

Втори етап: проверка за значимост на коефициентите в уравнението (3) (табл. 3). Виждаме, че *P-value* за нулевия коефициент *a*₀ (клетка *E29*) е извън критичната област за нулевата хипотеза, т.е. *a*₀ не е статистически значим, а за коефициентите *a*₁ и *a*₂ (клетки *E30* и *E31*) сме в критичната област за нулевата хипотеза, т.е. те са статистически значими.

Трети етап: От диалоговия прозорец *Regression* поставяме отметка на *Constant is Zero*, а другите параметри ги задаваме същите. В случай, че незначим се окаже коефициент от фактор-признаците трябва да се преразгледа избора им в уравнението на линейна регресия. След избиране на бутона *OK* се появяват

таблици, от които се вижда, че така полученото линейно регресионно уравнение $y = 0.77x_1 + 0.15x_2$ е целесъобразно.

ЗАКЛЮЧЕНИЕ

Коефициентите *a*₁ и *a*₂ позволяват да се направят следните изводи: с увеличаването на фактор-признака X₁ с една единица (лв; млн. и др.) води до увеличаване на резултативния признак с 0.77 единици, а увеличаването на факторпризнака X₂ с една единица (лв; млн. и др.) води до увеличаване на резултативния признак с 0.15 единици.

Благодарности. Работата е финансирана по проект НИП №РД-05-285/11.03.2009 на Шуменски Университет.

ЛИТЕРАТУРА

[1] Levine, D., M.Berenson, D.Stephan. Statistics for Managers using Microsoft Excel. Prentice-Hall, New Jersey, 1999.

[2] Winston, W.. Microsoft Excel Data Analysis and Business Modeling. Microsoft Press, 2004.

За контакти:

Ас. Красимира Янкова Костадинова, Катедра "Икономика и моделиране", ФМИ, Шуменски университет "Епископ Константин Преславски", тел.: 054-830 495, вътр. 138, e-mail: <u>kostadinova kr@abv.bg</u>

Докладът е рецензиран.