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An algorithm for solving a Sylvester quaternion equation

Georgi Georgiev, lvan lvanov, Milena Mihaylova, Tsvetelina Dinkova

Abstract: An algorithm for solving a Sylvester quaternion equation: The paper deals with the
solutions of a linear equation of one quaternion unknown. We find solutions of a Sylvester quaternion
equation by a reduction to a simple matrix equation. Using computer algebra systems MATHEMATICA and
MATLAB we obtain programs for symbolic and numerical presentation of these solutions. Important
particular cases and numerical examples are also considered.
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INTRODUCTION

The quaternion algebra is associative but non-commutative . Therefore there are
different kinds of linear equations of one quaternion unknown. These equations and their
solutions in separate cases are discussed in [1]. The aim of this paper is to give the
common method for solving a Sylvester quaternion equation.

THE QUATERNION ALGEBRA
We consider the algebra H of quaternions defined as a four-dimensional vector
space over R with basic elements e, i, j, k i.e.

H={ae+aji+a,j+ak/a eR,i=1+4} and
iP=j=k*=-1, ij=k=—ji, jk=i=-kj, ki= j=—ik. If a,beH,
a=ae+a,i+a,j+ak and b=be+b,i+b,j+bk ,then
a+b=(a +b)e+(a,+b,)i+(a,+b,)j+(a,+b,)k and
ab=(ab —a,b, —ab,—ab))e+(ab,+a,b +ab, —ab,)i+
+(ab, +ab +ab,—a,b,)j+(ab, +ab +a,b, —a,b,)k

Hence, H is associative non-commutative algebra with the unit element e and R
is a center of H Quaternions can be also written as four-dimensional vectors
a=(a,,a,,a;,,a,) € R* with above rules for addition and multiplication. The norm of the
quaternion a=ae+ai+a,j+ak is the non-negative real number

lal=+a+a;+a;+a; .

Let us consider  the space  of  pure imaginary  quaternions
ImH={a,i+a,j+ak/a,,a,,a, €R} which is a three-dimensional vector subspace of
H. Then every quaternion a=ae+a,i+a,j+a,k can be represented uniquely in the
form a=Re(a)e+Im(a), where Re(a)=a, is called a scalar part of a and
Im(a)=a,i+a,j+ak is called a vector part of a. More details about quaternions
can be found in [2] and [3].

A SYLVESTER QUATERNION EQUATION
Since H is non-commutative algebra we may consider the following equation of
one quaternion variable x
ax+xb=c, (1)
where a,b,ce H and ab#0. The above equation (1) is called a Sylvester quaternion
equation. In the whole article we assume that a,bc H\ R . It is shown in [1] that the
solution of the equation (1) is unique if and only if either Re(a)#—Re(b) or
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|lall#]| &]|. Moreover, this unique solution is obtained in an explicit form. There exist

correspondences between the quaternion algebra H and special kinds of 4x4 real
matrices (see [1] and [3]). Following [1] we consider the mappings i, :H—>R* and

i, :H— R™ given by

aq -4 —4d —4q a —a —a —4q
. a, a —-a a4 . a, a a, —4
L (a): and b (a):

a, a, a -—a, a, —a, a a

a, —a, a, q a, a -a, a

Then, the Sylvester equation (1) is equivalent to the matrix equation
Mx"=c",
where M=i1(a)+i2(b) is a 4x4 real matrix, x=(x,,x,,x,,x,) and ¢=(c,,c,,c;,C,)
are the vectors corresponding to the quaternions x € H and c € H, respectively (see [1],
Theorem 3.2)..
Proposition 1. The rank of the matrix M is even.
Proof: By direct calculations we obtain the eigenvalues of the matrix M

A,=a +bt \/— a’—a’—a’ b’ b’ —b’ — 2\/(a22 +a’ +a’) (b, +b’+b])

A, =a+b J_r\/— a’—a’—a’ —b'—b’—b}+2(a’ +a’ +a]) (b, +b +b]) .

From here it follows that the four eigenvalues are different and nonzero, or
equivalently, rank(M)=4, if a,#-b  or | Im(a)|#| Im(d)||. When a, =-b,
and || Im(a) ||= || Im(b) ||, we observe that A =-4, #0, 4, =1, =0. Therefore, we
have rank(M) =2 in this case.

Let S be the vector space spanned by the columns of the matrix M. This vector
subspace of R* can be represented as S = <m1, m,, m,, m4>, where
m, =(a, +b,a,+b,,a,+b,,a,+b,) , wm,=(-a,-b,,a +b,a,-b,,—a,+b,)"
m, =(-a, —b,,—a, +b,,a,+b,a,-b,) , m,=(—-a, —b,,a,—b,,—a, +b,,a,+b)"

Proposition 2. Let a,b,c,cxeH and ab#0. Then Sylvester equation
ax+xb=c has:

1) a unique solution if and only if rank(M) =4 ;

2) an infinite number of solutions if and only if rank(M)=2 andc' € S;

3) no solution if and only if rank(M)=2 and ¢" ¢ S
Proof: 1) The equation ax+ xb=c has one solution whenever the matrix equation
M x" =c¢" has one solution. That is equivalent to rank (M) =4 .

2) The equation ax + xb = ¢ has an infinite number of solutions when the system
of linear equations correspondingto M x" =¢" has an infinite number of solutions. This
is possible if and only if rank(M) <4 and rank(M)=rank(M), where M is a 4x5
matrix containing M and an additional column ¢". Using Proposition 1 we conclude that
rank(M)=2,and ¢" € S in this case.

3) From the assertions 1) and 2) it follows that the equation ax + xb=c has no
solution when rank(M)=2 and ¢" ¢ S
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AN ALGORITHM

We propose a simple algorithm for determining the solutions of the Sylvester
equation (1). This algorithm is based on Proposition 2 and it will be written down in
mathematical style pseudo code.

If rank(M )=4 then the unique solution of the equation (1) written in a vector form is
x'=M"¢"
else if rank(M ) =rank(M ) then print “has no solution”

else Find the general solution of M x" =c¢" that depends on two parameters

Realization of the algorithm with the computer algebra system MATLAB.

We suggest the file - function SQE with three input arguments. This function written
as M — file with the same name can solve the Sylvester’'s equation many times.
function x=SQE(a,b,c)
11=[a(1) -a(2) -a(3) -a(4);a(2) a(1) -a(4) a(3);a(3) a(4) a(1) -a(2);a(4) -a(3) a(2) a(1)];
12=[b(1) -b(2) -b(3) -b(4);b(2) b(1) b(4) -b(3);b(3) -b(4) b(1) b(2);b(4) b(3) -b(2) b(1)];
M=[1+12; M=sym(M);
if rank(M)==

X=M\c."; x=X."
elseif rank(M)~=rank([M c'])
disp(' The equation has no solution ');
else Z=null(M); syms p q; X1=p*Z(:,1)+q*Z(:,2);
X=X1+M\c."; x=X.";
end end

Example 1: We will solve the Sylvester equation ax + xb = ¢ with known a, b, c:

a) a=5e+i+7j-2k b=e+4i+2j-3k c=-20e—-9i+29;j-26k

b) a=4e+2i+ j+3k b=—-4e-3i+j+2k c=15%—-i+17j+5k

c) a=-3e+i+7j-6k b=3e+6i+j-Tk c=1le+5i+6j+4k

d) a=—-e+3i+4;+8k b=2e-3i+5j+k c=0

e) a=-2e+5i+j+4k b=2e—-4i+5j—k c=0

a) >>a=[517-2]; b=[14 2 -3]; c=[-20 -9 29 -26];

>> x=SQE(a,b,c)

X=

[ 2,1, 3,-2]

b) >>a=[421 3]; b=[-4 -3 1 2]; c=[15-1 17 5];

>> x=SQE(a,b,c)

Warning: System is rank deficient. Solution is not unique.

> |In C:\MATLABG6p5\toolbox\symbolic\@sym\midivide.m at line 38

In C:\MATLAB6p5\work\SQE.m at line 10

X=

[ -p+1, 2*p+5*q+15, P, ql

c) >>a=[-317-6]; b=[36 1-7]; c=[11 56 4];

>> x=SQE(a,b,c)

The equation has no solution.

?7?? One or more output arguments not assigned during call to 'sqe’.

d) >>a=[-1348]; b=[2-351]; c=[0 00 0];

>> x=SQE(a,b,c)

X=

[0, 0,0, 0]

e)>>a=[-2514];b=[2-45-1]; c=[0 00 0];

>> x=SQE(a,b,c)
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Warning: System is rank deficient. Solution is not unique.

> In C:\MATLABG6p5\toolbox\symbolic\@sym\midivide.m at line 38
In C:\MATLABG6p5\work\SQE.m at line 10

X=

[ 4*p+5*q, -3*p-6*q, q,

Example 2: Find all quaternions which commutate with a given quaternion
a=13e—-21i+5j-8k.

The required quaternion x and a commutate if and only if ax=xa. This is
equivalentto ax —xa =0. The problem is reduced to solving the Sylvester’s equation. We
will use file - function SQE.
>>a=[13 -21 5 -8]; b= -a; c=[0 0 0 O];
>> x=8QE(a,b,c)

Warning: System is rank deficient. Solution is not unique.
> |In C:\MATLABG6p5\toolbox\symbolic\@sym\midivide.m at line 38
In C:\MATLAB6p5\work\SQE.m at line 10
X=
[ q, -21/5%p, p, -8/5"p]
Consequently all quaternions which commutate with aare x =ge—21/5pi+ pj—8/5pk,

P-g<R .

Realization of the algorithm with the computer algebra system MATHEMATICA.
SQE[a_,b_,c ]:=
allll —dll2]] —all3]] —dl[4]] B[[1] —5l[2]] —bl[311 —5l[4]]

i (a) = al[2]] 1]l —al[4]]  dl3]] (b= o[[2]] Al  al[411 —oll31] :
al311  dl[4]] alllll —all2]]| ° BI[3]] —al[41] o[l  al[2]]
al[4]] —adl[311 dll2]]  al[l]] b[[41]  B([311 —&l[211 oIl

M=i,(a)+i,(b); If [ MatrixRank [M] == 4 , Inverse [M] . ¢, If [MatrixRank[ MapThread[

Append , {M, c}] ] #MatrixRank [ M ], Print [ “The equation ax+xb=c has not solution “],
Y ={X;. %5, X5, X,}; Solve [{ M[1]].y==c[[1]], M[[2]].y==c[[2]] ,M[[3]].y==c][[3]]
MI[4]].y==c[[4]] }.{X;, X5, X5, X, } 111

Some particular cases. We consider the following cases for the Sylvester equation
ax+xb=c:
1) Let a=ae+i, b=—-ae+i and c=ce+c,i.Then

0 -2 00
. . 2 0 00 o o )

M= (a) + 1, (b) = 0 0 0 0 and ¢ is a linear combination of the first and the
0 0 00

second column of M :
c 0 -2 —2u
“ :/12 + 4 0 = 4 , A, ueR .
c, 0 0 0
c 0 0 0
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Finally, we calculate the general solution with MATHEMATICA
c —c
x:[xI —>EZ, X, —>—2‘ ,p,qj p-q€R .

2)Let a=ae+i, b=-ae+jand c=ce+c,i+c,j—ck. Then the rank of the

0 -1 -1 0
: ) I 0 0 -1 .
matrix M =1, (a)+ i (b): L o0 o 1 is equal to 2 . Moreover ¢ is a linear
01 1 0

combination of the first and the second column of M :

c 0 -1 —u
“ =1 ! + 4 0 = A , A, nueR .
c, 1 0 A
c, 0 1 H

The general solution is x:(x] —>c,+q, X, >—C¢, —p, P, q ) p.-q<R.
3)Let a=ae+a,i+a,j+ak and a, #0. We will find the solutions of homogeneous
equation ax —xa=0. Since the rank of the matrix

0 0 0 0

0 0 -2a, o2a

M= (a)+ I (— a): " |isequalto 2 all quaternions which
0 2a, 0 -2a,
0 -2a, 2a, 0
. . a9 a9
commuting with a form a two parameter set x:(p, X, > , X, —> ,q] p.q<R.
4 4
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