Сравнително изследване на робастни системи за управление на манипулатор с еластично звено

Георги Георгиев

Comparative study of robust control systems for a flexible-link manipulator: A comparative analysis of robust control systems for tip-position control problem of a single-link flexible manipulator moving in the horizontal plane is presented. Two types systems, using piezo-actuator with μ -controllers, synthesized with and without consideration of the uncertainty of the payload mass are compared. Also management systems with a single-link flexible manipulator. Rev Words: Flexible-Link Manipulator. Piezoelectric Actuator. Robust Control. μ -controller.

ВЪВЕДЕНИЕ

Манипулаторите с олекотена конструкция притежават редица предимства пред традиционните масивни манипулатори. При извършване на бързи движения обаче повишената гъвкавост на звената е причина за поява на нежелани механични трептения. Това налага при синтеза на системата за управление да се отчита влиянието на еластичността. Динамичните модели на манипулаторите с еластично звено се характеризират с наличие на слабо демпферирани собствени честоти, неминималнофазовост и неопределеност в параметрите. Тези особености на моделите съществено затрудняват потискането на механичните трептения при бързи движения на манипулаторите. За по-добро потискане на механичните трептения на еластичното звено може да се използва пиезо-актуатор, закрепен върху звеното [1, 3, 6, 7, 9].

Поради силното влияние на неопределеността в параметрите на модела върху устойчивостта и качеството на затворената система, за синтеза на регулатори на манипулатори с еластично звено е подходящо да се използва µ-синтез [2, 3] при параметрична неопределеност на модела на манипулатора [1] с помощта на MATLAB функцията dksyn ot Robust Control Toolbox [5]. При синтез на µ-регулатор на манипулатор с еластично звено е желателно в модела на манипулатора да се отчита както неопределеността в коефициента на триене в задвижването и относителните коефициенти на демпфериране на еластичното звено, така и неопределеността в масата на товара. Тази неопределеност е подходящо да се отчита чрез въвеждане на входна мултипликативна неопределеност, както при използване [3], така и без използване на пиезо-актуатор [2].

В зависимост от използваните сензори методите за управление на манипулатори с еластично звено се разделят на две групи: съсредоточено управление и разсредоточено управление [2].

Интерес представлява сравнението на качеството на затворените системи за управление на позиционирането на манипулатор с еластично звено при използване на различни μ -регулатори, а също и сравняване със системи за управление при използване на конвенционални регулатори. В [4, 8] е представено сравнение на система за управление с μ -регулатор от съсредоточен тип с две степени на свобода със система, използваща ПД регулатор също с две степени на свобода.

В настоящата статия е представено сравнение на системи за управление на позиционирането на движещ се в хоризонтална равнина манипулатор с еластично звено. Сравнени са системи, използващи пиезо-актуатор с μ -регулатори от разсредоточен тип с две степени на свобода, синтезирани със и без отчитане на неопределеността в масата на товара. Освен това са сравнени и системи за управление на манипулатор с еластично звено с μ -регулатори от разсредоточен тип с две степени на свобода, синтезирани със и без отчитане на неопределеността в масата на товара. Освен това са сравнени и системи за управление на манипулатор с еластично звено с μ -регулатори от разсредоточен тип с две степени на свобода със и без използване на пиезо-актуатор.

ОПИСАНИЕ НА МАНИПУЛАТОРА

На фиг. 1 схематично е представен манипулатор с еластично звено и пиезоактуатор, който се завърта в хоризонталната равнина *xOy* около ос в точката *O*.

Фиг. 1. Схема на манипулатор с еластично звено и пиезо-актуатор

Въртящият момент и масовият инерционен момент на задвижващото устройство, приведени към оста O, са съответно τ и J_a . Манипулаторът се разглежда като механична система, съставена от идеално твърдо тяло с радиус R и еластично звено. Еластичното звено представлява тънък праволинеен хомогенен прът с постоянно правоъгълно напречно сечение, имащо размери s_b и s_b (s_b е в равнината на движение), дължина L, плътност ρ , модул на еластичност на материала E, инерционен момент на напречното сечение $I = s_b s_b^3 / 12$ и коравина на огъване EI. Позицията на пиезо-актуатора върху еластичното звено и неговата дължина са съответно L_a и S_a. Коравината на огъване на еластичното звено на участъка, където е поставен пиезо-актуаторът, е kEI, k>1. Под въздействие на подадено към пиезо-актуатора управляващо напрежение той се деформира и поражда двойка огъващи моменти v, пропорционални на напрежението и противопоставящи се на деформациите на звеното. Полезният товар, хващачът и модулът за локалните движения се моделират като материална точка с маса m_L . Положението на оста на недеформираното звено на манипулатора в координатната система xOy се определя от ставния ъгъл θ . Приема се, че еластичните отклонения на отделните точки от звеното са перпендикулярни на тази ос. лежат в хоризонталната равнина и са малки в сравнение с *L*. Еластичното отклонение на товара (свободния край на манипулатора) е означено с w_i , а положението на товара се определя от ъгъла α .

Числените стойности на параметрите на манипулатора са: $R=0.04~{\rm m}$, $L=1~{\rm m}$, $s_b=0.05~{\rm m}$, $s_h=0.0032~{\rm m}$, $\rho=2700~{\rm kg/m^3}$, $E=6.9\times10^{10}~{\rm N/m^2}$, $I=1.37\times10^{-10}~{\rm m^4}$, $J_a=0.1~{\rm kgm^2}$, $L_a=0.005\times L$, $S_a=0.05~{\rm m}$ и k=1.05.

Уравненията, описващи динамиката на манипулатора, са получени с използване на метода на крайните елементи [1]:

$$\ddot{q}_i + 2\xi_i \omega_i \dot{q}_i + \omega_i^2 q_i = b_{a_i} \tau + b_{s_i} \nu, \quad i = 1, 2, ..., m,$$
(1)

където q_i са модални координати, ξ_i – относителни коефициенти на демпфериране на еластичното звено, а ω_i са собствените честоти на манипулатора. Величините θ , α и w_i се определят чрез зависимостите:

$$\theta = b_a^T q, \quad h_L = a^T q, \quad \alpha = \operatorname{arctg} \frac{h_L}{R+L}, \quad w_L = (R+L)\operatorname{tg}(\alpha - \theta).$$
 (2)

В (1) и (2) b_a , b_s и *a* са вектори от коефициенти. Собствените честоти ω_i на манипулатора и векторите b_a , b_s и *a* се определят чрез програмата ABAQUSTM.

Входни величини за модела на манипулатора са двигателният момент τ , създаван от електрозадвижването, и двойката огъващи моменти v, създавани от пиезо-актуатора. Управляема величина е ъгловото положение α на свободния край на манипулатора. В изходните величини на модела са включени и ставният ъгъл θ , ускорението $\ddot{\alpha}$ и еластичното отклонение w_t на свободния край.

Първите три собствени честоти на манипулатора, изчислени за номиналната стойност на масата на товара $m_L = 0.24 \text{ kg}$, са $\omega_1 = 0 \text{ rad/s}$, $\omega_2 = 19.8 \text{ rad/s}$ и $\omega_3 = 81.9 \text{ rad/s}$. Понеже четвъртата ($\omega_4 = 242.8 \text{ rad/s}$) и останалите собствени честоти имат стойности, много по-високи от честотната лента на затворената система, в модела са включени само първите три модални координати на манипулатора.

За отчитане на триенето в електрозадвижването в първото от уравненията (1) е въведено събираемото $d_r \dot{q}_1$, където d_r е коефициент на триене, при което поради $\omega_1 = 0$ rad/s и $b_{s_1} = 0$ уравнението се преобразува във вида

$$\ddot{q}_1 + d_r \dot{q}_1 = b_{a_1} \tau.$$
(3)

Разглежда се задачата за позициониране на свободния край на манипулатора в желано положение. Предполага се, че при извършване на дадено движение масата на товара има постоянна, но неизвестна стойност в интервала от 0.12 kg до 0.36 kg, т.е. масата на товара е неопределен параметър с номинална стойност $m_L = 0.24 \text{ kg}$ и максимална относителна неопределеност 50 %. Приема се също, че коефициентът на триене в задвижването е неопределен параметър с номинална стойност $d_r = 0.15 \text{ s}^{-1}$ и относителна неопределеност 20 %, а коефициентите на демпфериране на еластичното звено са неопределени параметри с номинални стойност $\xi_2 = \xi_3 = 0.04$ и относителна неопределеност 40 %. Трябва да се отбележи, че тези параметри са основният източник на неопределеност при описание на движението на манипулатори с еластично звено.

БЛОКОВА СХЕМА НА СИСТЕМАТА ЗА УПРАВЛЕНИЕ

Блокова схема на системата за управление, включваща блоковете $M, W_p, W_u,$ $W_{y}, W_{d1}, W_{d2}, W_{n1}$ и $W_{n2},$ с чиято помощ се формулират изискванията към качеството при *µ*-синтеза, е показана на фиг. 2. Управляема величина е ъгловото положение α . Измерват се ставният ъгъл θ и ускорението $\ddot{\alpha}$. Задаващата величина, управляващите величини и моментите, създавани от двигателя и пиезоактуатора, са означени съответно с r, u, u_{v} , τ_{a} и v_{a} . Сигналите d_{1} и d_{2} се използват за формиране на съпротивителни моменти, служещи за входни смущаващи въздействия. Сигналите n₁ и n₂ се използват за формиране на измервателните шумове, а е_p, е_u и е_v са изходни величини, характеризиращи качеството. С G е означен моделът с неопределени параметри на еластичния манипулатор, с W_{au} и W_{av} – моделите съответно на токовия контур на електрозадвижването и на блока за управление на пиезо-актуатора. Регулаторът К е с две степени на свобода, с което се постига по-добро качество на системата за управление. Той има три входа, на които постъпват задаващата величина и двете измервани величини, и два изхода, чрез които се осъществява управление на електрозадвижването и пиезо-актуатора.

Фиг. 2. Блокова схема на затворената система с изисквания към качеството

Блокът M е еталонният модел, към който трябва да се доближава затворената система с вход r и изход α . Тегловните предавателни функции W_p , W_u и W_v се използват за отразяване на относителното значение на различните честотни диапазони, за които се изисква качеството. Входните смущаващи въздействия се получават при преминаване на сигналите с единична норма d_1 и d_2 през формиращите филтри съответно W_{d1} и W_{d2} . Измервателните шумове се получават при преминаване на сигналите ли n_2 през формиращите филтри съответно W_{d1} и W_{d2} . Измервателните шумове се получават при преминаване на сигналите с единична норма n_1 и n_2 през формиращите филтри съответно W_{n1} и W_{n2} .

Критерият за качество на затворената система за управление е

$$\left\|\Phi(s)\right\|_{\infty} < 1,\tag{4}$$

където $\Phi(s)$ е предавателната матрица на системата с входове r, d_1 , d_2 , n_1 и n_2 и изходи e_p , e_u и e_v .

При синтеза се определя линеен регулатор *K*, който стабилизира затворената система и осигурява изпълнение на критерия за качество (4) за всички допустими стойности на неопределените параметри в модела на манипулатора.

Синтезът на μ -регулатор с отчитане на неопределеността в масата на товара m_L , означен за удобство K_{mu1} , моделът M и тегловните предавателни функции W_p , W_u , W_v , W_{d1} , W_{d2} , W_{n1} и W_{n2} са представени в [3]. μ -регулаторът, синтезиран без отчитане на неопределеността в масата на товара, е означен \overline{K}_{mu1} . За регулаторите K_{mu1} и \overline{K}_{mu1} са определени балансирани реализации в пространството на състоянията, с които се извършват изследванията на системата.

ЧЕСТОТНИ ХАРАКТЕРИСТИКИ НА РЕГУЛАТОРА K_{mu1} И ЧУВСТВИТЕЛНОСТИ НА ЗАТВОРЕНАТА СИСТЕМА

Логаритмичните амплитудно-честотни характеристики на регулатора K_{mu1} с изходни величини u и u_v са показани съответно на фигури 3 и 4. Те коригират честотните характеристики на затворената система при промяна на параметрите на еластичния манипулатор.

Фиг. 3. Амплитудно-честотни характеристики на К_{ти1} с изход и

Фиг. 4. Амплитудно-честотни характеристики на K_{mu1} с изход u_v

Логаритмичните амплитудно-честотни характеристики на затворената система с K_{mu1} , за 50 случайни комбинации от стойности на неопределените параметри, по отношение на смущенията d_1 и d_2 и шумовете n_1 и n_2 са показани съответно на фигури 5, 6, 7 и 8. Входни величини на системата са съответно d_1 , d_2 , n_1 и n_2 , а

Фиг. 5. Чувствителност на затворената система с K_{mu1} към смущаващото въздействие d_1

Фиг. 6. Чувствителност на затворената система с K_{mu1} към смущаващото въздействие d_2

Фиг. 7. Чувствителност на затворената система с К_{ти1} към шума n₁

Фиг. 8. Чувствителност на затворената система с K_{mu1} към шума n₂

изходна – ъгловото положение α на свободния край на манипулатора. От фигурите се вижда, че характеристиките имат максимуми около втората и третата собствени честоти на манипулатора. От фиг. 5 следва, че регулаторът K_{mu1} много добре потиска основното за системата нискочестотно смущаващо въздействие d_1 . От

фиг. 7 следва, че чувствителността към измервателния шум *n*₁ се променя съществено в интервала между собствените честоти на манипулатора.

СРАВНИТЕЛНО ИЗСЛЕДВАНЕ НА СИСТЕМИТЕ С K_{mu1} И \overline{K}_{mu1}

В табл. 1 са представени максималните стойности на μ , определящи робастната устойчивост и робастното качество на системите за управление с регулаторите K_{mu1} и \overline{K}_{mu1} . Вижда се, че робастната устойчивост и робастното качество са по-добри при използване на регулатора K_{mu1} , синтезиран с отчитане на неопределеността в масата на товара.

Регулатор	Робастна устойчивост	Робастно качество
	$\mu_{ m max}$	$\mu_{ m max}$
K_{mu1}	0.617	1.07
\overline{K}_{mu1}	0.828	1.19

Табл. 1. Робастна устойчивост и робастно качество на системите за управление с регулаторите K_{mu1} и \overline{K}_{mu1}

Логаритмичните амплитудно-честотни характеристики на затворените системи с K_{mu1} и \overline{K}_{mu1} за 50 случайни комбинации от стойности на неопределените параметри са показани съответно на фигури 9 и 10. Използва се модел с параметрична неопределеност на манипулатора с еластично звено и пиезо-актуатор [1], в който като неопределени параметри се разглеждат масата на товара m_L , коефициентът на триене в задвижването d_r и относителните коефициенти на демпфериране ξ_i , i = 2,3 на еластичното звено. Входна величина на системата е

Фиг. 9. Амплитудно-честотни характеристики на затворената система с К_{ти1}

Фиг. 10. Амплитудно-честотни характеристики на затворената система с \overline{K}_{mu1}

задаващото въздействие r, а изходна – ъгловото положение α на свободния край на манипулатора. С прекъсната линия е дадена честотната характеристика на еталонния модел M с честотна лента 16 rad/s. Вижда се, че двата регулатора успяват да потиснат резонансните пикове в честотната лента на системата и осигуряват близки до модела честотни характеристики на системата в достатъчно широк честотен интервал. Амплитудно-честотните характеристики на затворената система с регулатора \overline{K}_{mu1} имат пик при честота около 40 rad/s и са по-лоши от характеристиките на системата с регулатора K_{mu1} .

Системите за управление със синтезираните μ -регулатори са изследвани с помощта на SimulinkTM. Симулирането е проведено за 21 стойности на масата на товара m_L , равномерно разпределени в интервала от $0.12 \, \mathrm{kg}$ до $0.36 \, \mathrm{kg}$. Стойностите на неопределените коефициент на триене в задвижването и относителни коефициенти на демпфериране на еластичното звено са взети равни на долните им граници, отговарящи на възможно най-слабото демпфериране на механичната система. Използвано е бързоизменящо се задаващо въздействие, което се установява в желаното крайно положение $\pi/12.5 \, \mathrm{rad}$ за $0.8 \, \mathrm{s}$. То се формира по зависимостта

$$r = \begin{cases} a_r t - (a_r / \omega_r) \sin(\omega_r t) + r_0, & 0 \le t \le t_m \\ r(t_m), & t_m < t \le t_f \end{cases},$$
(5)

където параметрите са $a_r = 0.1\pi$ rad/s, $\omega_r = 2.5\pi$ s⁻¹, $r_0 = 0$ rad, $t_m = 0.8$ s и $t_f = 3$ s.

Преходните процеси на затворените системи за 21 стойности на масата на товара, равномерно разпределени в интервала от $0.12 \, \mathrm{kg}$ до $0.36 \, \mathrm{kg}$, на ъгловото положение α с регулаторите K_{mu1} и \overline{K}_{mu1} са представени чрез двумерни графики съответно на фигури 11 и 12. Вижда се, че реализациите на процесите при различните стойности на m_L в интервала от $0.12 \, \mathrm{kg}$ до $0.36 \, \mathrm{kg}$ са близки помежду си, като при използване на регулатора K_{mu1} близостта е по-голяма и процесите

затихват по-бързо. Следователно системата с K_{mu1} има по-добро робастно качество.

Фиг. 11. Ъглово положение α за K_{mul}

Фиг. 12. Ъглово положение α за \overline{K}_{mu1}

СИСТЕМА ЗА УПРАВЛЕНИЕ НА МАНИПУЛАТОР С ЕЛАСТИЧНО ЗВЕНО БЕЗ ПИЕЗО-АКТУАТОР

Схемата на манипулатора е подобна на представената на фиг. 1, като пиезоактуаторът отсъства. Моделът на манипулатора без пиезо-актуатор се получава от (1), (2) и (3), като се положи $b_{s_i} = 0$ и $b_{a_i} = b_i$, i = 1, 2, ..., m. Входна величина за манипулатора е двигателният момент τ. модела на създаван електрозадвижването. Управляема величина е ъгловото положение α на свободния край на манипулатора. Числените стойности на параметрите на манипулатора са същите, както за манипулатора на фиг. 1, като се изключат L_a , S_a и k. За удобство *µ*-регулаторът, при който не се използва пиезо-актуатор е означен *K*_{*mu*²}. Блоковата схема на затворената система за управление с K_{mu2} е подобна на схемата на фиг. 2, като регулаторът К също е с три входа, но има само една управляваща величина и, т.е. елементите W_{v} , W_{av} и W_{d2} са отстранени и се приема, че $W_{au} = W_{a}$, $d_{1} = d$ и $W_{d1} = W_d$.

Синтез на μ -регулатор K_{mu2} с отчитане на неопределеността в масата на товара m_L , моделът M и тегловните предавателни функции W_p , W_u , W_d , W_n и W_{n2} са представени в [2]. За K_{mu2} е определена балансирана реализация в пространството на състоянията, с която се извършват изследванията на системата.

СРАВНИТЕЛНО ИЗСЛЕДВАНЕ НА СИСТЕМИТЕ С К_{ти1} И К_{ти2}

Максимумите на структуриранита сингулярни стойности μ , определящи робастната устойчивост на системите за управление с регулаторите K_{mu1} и K_{mu2} , са представени в табл. 2 и са приблизително равни, като робастната устойчивост на системата с използване на регулатора K_{mu1} е по-добра.

	, , , , , , , , , , , , , , , , , , ,
Регулатор	Робастна устойчивост $\mu_{ m max}$
K_{mu1}	0.617
K_{mu2}	0.626

Табл. 2. Робастна устойчивост на системите за управление с регулаторите K_{mu1} и K_{mu2}

Максимумите на структурираните сингулярни стойности μ за случая на робастно качество на системите за управление с регулаторите K_{mu1} и K_{mu2} , са съответно 1.07 и 1.05, като са получени при различни условия.

Логаритмичните амплитудно-честотни характеристики на затворената система с K_{mu2} , с вход r и изход α , за 50 случайни комбинации от стойности на неопределените параметри са показани на фиг. 13. Вижда се, че се появяват пикове около втората и третата собствени честоти на манипулатора.

От сравняването на фигури 9 и 13 следва, че затворената система с K_{mu1} е малко по-бавна, но честотните характеристики са "събрани" за по-широка честотна лента, поради което преходните процеси на системата с K_{mu1} са по-близки помежду си, отколкото преходните процеси на системата с K_{mu2} .

Системата за управление с μ -регулатора K_{mu2} е изследвана с помощта на SimulinkTM при $d_r = 0.12 \,\mathrm{s}^{-1}$, $\xi_2 = \xi_3 = 0.024$ и заданието (5). Двумерна графика, представяща преходните процеси за 21 стойности на масата на товара m_L , равномерно разпределени в интервала от $0.12 \,\mathrm{kg}$ до $0.36 \,\mathrm{kg}$, на ъгловото положение α , получени при симулиране на затворената система с регулатора K_{mu2} е показана на фиг. 14.

Фиг. 13. Амплитудно-честотни характеристики на затворената система с К_{ти2}

Фиг. 14. Ъглово положение α за K_{mu2}

Вижда, че реализациите на процесите за α при различните стойности на m_L са близки помежду си. От сравняването на фигури 11 и 14 се вижда, че при използване на регулатора K_{mu1} близостта е по-голяма, т.е. системата с K_{mu1} има по-добро робастно качество и процесите затихват по-бързо.

ЗАКЛЮЧЕНИЕ

Представена е система за управление с μ -регулатор от разсредоточен тип с две степени на свобода на манипулатор с еластично звено, движещ се в хоризонтална равнина. Сравнени са случаите с използване на пиезо-актуатор и μ -регулатори, синтезирани със и без отчитане на масата на товара, като е показано, че при използване на μ -регулатор, синтезиран с отчитане на неопределеността в масата на товара системата има по-добро робастно качество. Освен това са сравнени и случаите с μ -регулатори, синтезирани с отчитане на неопределеността в масата на товара със и без пиезо-актуатор, като е показано, че при използване на μ -регулатори, синтезирани с отчитане на неопределеността в масата на товара със и без пиезо-актуатор, като е показано, че при използване на μ -регулатор с пиезо-актуатор системата има по-добро робастно качество.

ЛИТЕРАТУРА

- [1] Георгиев, Г. Ст., Г. Л. Лехов, И. В. Иванов. Модел с параметрична неопределеност на манипулатор с еластично звено и пиезо-актуатор. Механика на машините, том 21 (100), брой 1, стр. 32 - 37, ISSN 0861-9727, 2013.
- [2] Георгиев, Г. Ст., Г. Л. Лехов. Синтез на робастен регулатор от разсредоточен тип на манипулатор с еластично звено. Научни трудове на РУ "А. Кънчев", том 53, серия 3.1, "Електротехника, електроника, автоматика", подсекция "Електротехника, електроника, автоматика", стр. 129 – 137, ISSN 1311-3321, Русе, 2014.
- [3] Георгиев, Г. Ст., Г. Л. Лехов, И. В. Иванов. Синтез на робастен регулатор на манипулатор с еластично звено и пиезо-актуатор. Механика на машините, том 23 (109), брой 1, стр. 18 - 23, ISSN 0861-9727, 2015.
- [4] Лехов, Г. Л., П. Х. Петков. Синтез на съсредоточено робастно управляващо устройство с две степени на свобода на манипулатор с еластично звено. Трудове на международната конференция "Автоматика и информатика". София, I-201-204, 2010.
- [5] Balas, G., R. Chiang, A. Packard, M. Safonov. Robust Control Toolbox: User's Guide. Natick, MA: Math-Works, 2010.
- [6] Karkoub, M., G. Balas, K. Tamma, M. Donath. Robust Control of Flexible Manipulators via μ-Synthesis. Control Engineering Practice, 8, 725-734, 2000.
- [7] Kerr, M., S. Jayasuriya, S. Asokanthan. QFT Based Robust Control of a Single-Link Flexible Manipulator. Journal of Vibration and Control, 13, No. 1, 3-27, 2007.
- [8] Lehov, G., P. Petkov. Design of a Collocated Robust Controller for a Flexible-Link Manipulator. 2012. Information, Communication and Control Systems and Technologies, No. 1, pp. 52-56, 2012.
- [9] Reis, J. C. P., J. Sa da Costa. Motion Planning and Actuator Specialization in the Control of Active-Flexible Link Robots. Journal of Sound and Vibration, Vol. 331, 3255-3270, 2012.

За контакти:

Ас. инж. Георги Стефанов Георгиев, Катедра "Компютърни системи и технологии", Русенски университет "Ангел Кънчев", Тел.: 082 888-681, 082 888-574, E-mail: gstefanov@ecs.uni-ruse.bg.

Докладът е рецензиран.