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Bivariate Polya-Aeppli risk model’

Krasimira Kostadinova

Abstract: In this paper we consider a risk model in which the claim counting process is the bivariate
Polya-Aeppli process, defined by Minkova and Balakrishnan in [9]. We call it a bivariate Polya-Aeppli risk
model. We also consider two types of ruin probability for this risk model and find the Laplace transform for
the ruin probability. We investigate in detail the particular case of exponentially distributed claims.
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1. INTRODUCTION

In many cases, the claims to the insurance company can arrive simultaneously. For
example, an accident can cause two claims simultaneously: for motor insurance and for
personal injury. Thus, for modelling we need some bivariate risk model.

The surplus process of an insurance company is described by

N(t) 0
U(t)=u+ct-ZZi,{Z:0j,t20, (1)
i=1 1
where u is the initial capital, ¢ represents the premium income per unit time and N(t) is a
homogeneous Poisson process with intensity 12> 0 (N(t) ~ Po(4t)). Z, i =1, 2, ... is a
sequence of independent, identically distributed random variables (iid r.v.'s), independent
of the counting process N(t).
Mostly, a compound Poisson process is used for the counting process in the process
U(t). A compound Poisson process can be represented by the sum
Nt =X1+Xz+ ... + XNl(l)’ )
where Ny(t) ~ Po(at) and Xy, Xo, ... are iid r.v.'s, independent of Ny(t), see [4], [6], [7] and
[8]. The probability generating function (PGF) of the process N(t) in (2) is given by
_ iy ()

Wz\’m(s) =e ’ (3)
where y,(s) is the PGF of the compounding random variable X. In the case of geometric
compounding distribution, i.e. Xi ~ Ge«(1 — p), i = 1, 2, ..., N(t) has a Polya-Aeppli
distribution with parameters ir and p (N(f) ~ PA(At, p)). The defined process is called a
Polya-Aeppli process. For the Polya-Aeppli process we use the notation N(t) ~ PAP( A, p ),

see [2]. The probability mass function (PMF) is given in the next theorem (see [3] and [8]).
Theorem 1.1. The probability mass function of PAP( 1, p ) is given by

e”i=0,
PINO=)=13 & i-1\ad=p)" o . 4
' e Z(’;_J((m'/o)) pri=12,... @

In this paper we suppose that the compounding r.v. X = (X7, X3) has a bivariate
geometric distribution, i.e. we introduce a process with Type Il Bivariate Polya-Aeppli
distribution. The Type Il Bivariate Polya-Aeppli distribution was defined by Minkova and
Balakrishnan in [9]. The PGF of the bivariate geometric distribution (BivGe(«a, S)), see [5],

is given by
W1(51!S2)1$ (5)

1—as, - fs,’
where a and B are nonnegative parameters and y = 1-a — . Then we define a bivariate
process (Nj(t), No(t)) with joint PGF given by
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'//(51’32) - e*?-r(lfwl(x.» Jz))~ (6)
We can give the following definition of Type Il Bivariate Polya-Aeppli process and its
PMF.
Definition 1.1. The bivariate process (Ny(f), Nz(t)), corresponding to (6), is called
Type |l bivariate Polya-Aeppli process (BPAP( 4, a, f)), with parameters 1, « and .

Theorem 1.2. The probability mass function of BPAP( 1, «, ) process is given by
10, 0)= e,

£, )= [i:"]a'ﬁ'i(’"””_IJM{”, i, j= 0, L (i, j)# (0, 0). 7

o i+ m!

2. BIVARIATE RISK MODEL
Let us consider the following bivariate surplus process for two lines of business
Ny (1)
U)=u+ct - ZZi

J=1

Ny(o) ®)
U,(t)=u, +cyt — ZZIZ
j=1

Here u; and uy are the initial capitals; ¢; and ¢, represent the premium incomes per unit
time and 7', 7/, Z), ..., and Z°, 7}, Z;, ... are two independent sequences of iid r.v.'s,

independent of the counting processes Ny(t) and Ny(t), representing the corresponding
claim sizes. Let y; = E(Z") and p, = E(Z?) be the means of the claims. Denote by Sy(t) =
N N

Z Z; and So(t) = Z Z; the corresponding accumulated claim processes.

J=1 j=1

We consider (8), where Ny(f) and Ny(t) are Polya-Aeppli counting processes and we
call this model a bivariate Polya-Aeppli risk model. The case of N(t) = No(t) = N(t) is
analysed in [1].

In this note we are going to consider two possible times to ruin

Tmax = inf{ t | max(Us(t), Ux(t)) < O} 9)
and

Teum = inf{ t| Us(t) + Us(t) < 0}, (10)
and the corresponding ruin probabilities

(.Umax(uh U2) = P(Tmax < °°) (1 1)
and

Wsum(U1, U2) = P(Tsym < ). (12)

For the event in (9) we have the following:
{max(Us(t), Uz(t)) < 0} = {Us(t) < 0, Ux(t) < O} = {S1(t) > us + c4t, Sa(t) > uz + caf}.
It follows that the ruin probability wmax(U+, U2) is the joint survival function of (Sy(t), Sz(t)). In
a similar way, for the event in (10) we obtain
{Us(t) + Uz(t) < O} = {Sy(t) + Sa(t) > us + uz + (C1 + Co)t}, (13)
i.e., the ruin probability wsum(us, uz) is the survival function of the sum Sy(t) + Sx(t).

2.1. LAPLACE TRANSFORMS
Denote by LT, (s,) and LT,.(s,) the Laplace transforms of the r.v.'s Z" and Z2. Then,

the Laplace transform of (Sy(f), Sz(t)) is given by
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_ 5181 (D-5285 (1)) _
LT5 ), sy0y(81 8) = E[e7 1050 =

© © E[e_mz‘uﬂz’]) —,sZ(Z‘2+A__+Z%)]P(N (t) i, N (t) _ ]) _
Zojzo ' ’ (14)

_;L{I_lfaLT ,(x,)yfﬁLT w(h)}
= l//(N,(t),Nz(r))(LTZl (s1)s LTZz (s,))= e ‘ o,
where y=1-a—-p.
The Laplace transforms of the marginal compounding distributions are given by

» 1_‘—/)1}
1-p, LT _,(s))
LTS,(I)(SI) = LT(S,(/].SZ(r))(SI 0)=e - ’ s P = 1 fﬂ (15)
and
»y ,sz}
1=p,LT ,(s,)
LTsz(r)(sz) = L]-‘(Sl(l),Sz(t))(O’sl) =e - 7 » Pr = lfga. (16)
For the ruin probability ws,m» we have
AT (~)y—ﬂLT (J (17)
LT5 05,0 () = LTi5.0, s,00(55 )= € ’ o
In the next lemma we use a result related to Laplace transforms, given in [10].
Lemma 2.1. For the joint survival function P(Sy(f) > x, Sx(f) > y) we have
[Je P w>x 5,0 sy
00
_ 1=LT5 (5) = LT5, (8,) + L5 (15,00 (51> 5)
518, (18)
Y pi —id 1 1=p, 1 i
1 1_plLT71 (s,) l_szy;z (s,) I_O‘LY;[(Sl)_ﬂL];z (s,)
=—-/[l-e - - ’ +e . Z I
515,
Lemma 2.2. For the survival function P(S(t) + Sz(t) > x) we obtain
- 1 1 ’1{1’1%7 REE :m}
je P(S,(1)+ S,(t) > x)dx = —[1= LT, ¢ ()] =~|1-e . 29 (19)

) A S

2.2. EXPONENTIALLY DISTRIBUTED CLAIMS

Let us consider the case of exponentially distributed claim sizes, i.e. F, (x)=1 —eI,

¥

xz0and G,.(y)=1-e *,y20,and ys, y2> 0. Denote by
oxk e T(n+1,x)

e(n,x) = kzoﬁ = W, (20)
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a truncated exponential sum function, where [(n) is a Gamma function and

I(a, x):jt“"e"dt is the incomplete Gamma function. For the ruin probability wmax we

x

have
P(S, (0> x 510> )= ¥ Y F ()G (PN, (1) =i, Ny(1) = ), (21)
where
—%j -z . X
F (x)zeﬂe(l—l, #J, i = 1, 2, .. is the tail distribution of Zz'+..+2 and
1

.

G'n=e” (J I8 i J j=1, 2, ...is the tail distribution of z7 +..+ Z} .

In this case we have
P(S,(t) > x, S,(1)>)

— pH=n) ie[i—l, i]a‘i(m*—l_lj (Aty)" S
i-1

H m=1 ! m!
= (. y m+/—1] (ﬁ,zy)”’ . (22)
+> e j-1 ) e
; ( ujﬂ Zl[ J m!

SRR (AT R €7 (!
+ a'Plei-1, —l¢ j-1, —j{ . j [ o e M e,
ZZ [ J( wk 7 B e o

Substituting x = us + cst and y = uy + cot in (22), we obtain the ruin probability Wmax(u+,
Uz).

For the ruin probability Wsum(Us, U2) in the case of Z' = Z2 = Z, and hence u; =2 =y,
we obtain the Laplace transform of the sum Sy(t) + Sa(t)

e
Uy sn(0)= ¢ T @
This means that
S1(t) + Sz(t) =Z;+ ...+ ZN(t)r (24)
where N(t) has a modified Polya-Aeppli distribution with parameters i > 0 and y €[0,1)
with PMF
eI =,

PIN® = i)= i )Z[ J(W) . (25)

9Ligens

The survival function of the sum Sy(f) + Sy(t) is the survival function of the sum of
claims, i.e.

P(S()+S,(t) > x) = P(Z,+.c+Zy,, >x)= i F (PN @) =), (26)
i=0

where I?*i(x) e e[z—l ] i =1, 2, ...is the tail distribution of Z; + ... + Z. Hence we
U

have

P(S, () + S, (t) > x) = PRUaL +ZF ( )Z[ J(V/u) (-p)e ~(1-p)at

o N +ze[1 -1, 7] ) z[ ](7/1? ye—(l—yw
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and for x = uy + uz + (¢ + c)t, we obtained the ruin probabilities Wsum -

3. CONCLUSIONS

In this study we define a bivariate Polya-Aeppli risk model. We introduce two types of
ruin probability for the defined risk model. We also obtain the Laplace transform of the ruin
probability and investigate a special case of exponentially distributed claims.
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