
НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 70 -

Some Important Optimizations of Binomial and Trinomial Option Pricing

Models, Implemented in MATLAB

Juri Kandilarov, Slavi Georgiev

Abstract: In this paper the well-known binomial and trinomial option pricing models are considered.

First the assumptions on the market and the equations which the models are based on are presented. The

heart of the paper consists of some crucial optimizations by memory and time, implemented on the

programming code of MATLAB. Next, the trinomial model is briefly discussed and some important notes are

made. Finally, the main ideas of the paper are summarized and commented.

Key words: binomial and trinomial option pricing models, European and American option,

optimization, programming, MATLAB.

INTRODUCTION

Ultimately it is the market which decides the value of an option. If we try to find a

reasonable price of an option, we need first a mathematical model of the market. Here we

will accept the model named after Black, Merton and Scholes, which is both successful

and widely spread. Before talking on the mathematical side of the model itself, we will

present the assumptions, which are made on the market:

• There are no arbitrage opportunities – this means that no riskless income is

possible. This statement leads further to the assumption that all participants on the market

have equal and immediate access to all information available at any time;

• The market is frictionless – this means that there are no transaction costs (fees

or taxes), the interest rates for borrowing and lending money are equal, and all securities

and credits are available at any time in any size. Consequently, all variables are perfectly

divisible – they may take any real number. Further, individual trading would not influence

the market;

• The asset price follows a geometric Brownian motion;

• � and � are constants for � � � � �. No dividends are paid in that time period.

The option is European. (It is possible some of the last assumptions to be loosened.

For example, � and � may be functions of �, and dividends could be incorporated in the

model [2], but here this is out of our view.)

Before we start modelling, we ought to make some comments. We will consider the

��� �� domain on the half strip � � � � �� � � �, where � is the maturity of the option and �

is the price of the underlying asset. With ����� �� we will denote the price of the option in

time � and current asset price �� at that time �.
Now let us present the considered algorithm in this paper, known as the binomial

method due to Cox, Ross and Rubinstein, which is robust and widely applicable.

In practice we are often interested in the one value ����� �� of an option at current

time and spot price. Then it is unnecessarily costly to calculate the surface ���� �� for the

entire domain only to extract the required information for ����� ��. This relatively small task

of calculating ����� �� could be comfortably solved using the binomial model. This method

is based on a tree-type grid applying appropriate binary rules at each grid point. The grid is

not predefined but is constructed by the method [4].

Now we begin with discretizing the continuous time � by replacing it with equidistant

time instances ��. Let us introduce the notations: �: number of time steps; �� 	� �	 �			�� 	 �
�� � � ��� ���			�� 	 ��
�

	 �����.
So far the domain of the ��� �� half strip is semidiscretized in that it is replaced by

parallel straight lines, leading to a discrete-time model. The next step of discretization

replaces the continuous values �� along the parallel � � �� by discrete values ��� for all �
and appropriate �.

Now we will assume the following rules, over which the binomial method is built:

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 71 -

1. The price � over each time period
� can only have two possible outcomes – the

value � could either evolve up to �
 or down to �� with �
 �

. Here
 is the factor of

an upward movement and � is the factor of a downward movement. Very often, due to

computational effectiveness and convenience, we use a recombining tree. This means that

an upward movement, followed by a downward movement would result in the same price

as a downward movement, followed by an upward movement.

2. The probability of an upward movement is �, i. e. ��up� � �.

Due to the fact that we would like to derive equations for the so far undetermined

parameters
, � and �, we will assume further

3. The expectation and variance of � refer to the continuous counterparts, evaluated

for the risk-free interest rate �.

This assumptions lead to equations about
, � and �. The resulting probability � of 2.

does not reflect the expectations of an individual in the market. Rather � is an artificial risk-

neutral probability that matches 3. The expectation � used below refers to this probability

[4].

The derivation of the equations will be given in very short:

First, let us recall the definition of the expectation for the discrete and continuous

cases:

������� � ���
 � �� � ������				������� � �������
Equating gives

���� � �
 � �� � ����
which leads to

� �

���� � �

 � � �

Now let us equate the variances:

��������� � ��	�	�����
�

��
� ���

��������� � ����
�	 � �� � �������	 � ��	��
 � �� � ����	�
Applying the first equation, we derive the second:

�	����
�

��
� �
	

� �� � ���	
�

Since we have two relations for the three unknown parameters, we are free to

impose an arbitrary third equation. The classical example is the plausible equation

� � ��

which reflects a symmetry between upward and downward movement of the asset price.

Now the parameters
, � and � are fixed and they depend on �, � and
�. Next we

analyze the grid.

The above rules are applied to each grid line � � ��� ��, starting at �� � � with

current spot price � � ��. Doing it for the subsequent values of �� builds the tree with

values �
���
, where � � � � �. In this way, specific discrete values ��� of �� are defined. As

we mentioned before that the tree is recombining, after time period �
� the considered

asset price could only take three values instead of four. It does not matter which of the two

possible paths we take to reach �
�. Consequently, the defined binomial process is path

independent [4]. Accordingly at the expiration time � � �
� the price � could take only the

�� � �� discrete values �
���
�
� � � ��� ��. The number of nodes in each time layer

grows linearly in �, and the number of nodes in the tree – quadratically in �.

We will skip the solution of the equations and will declare that up to higher order

terms,

 � �
√���				� � �

√���

RELATIONSHIP AND CONVERGENCE TO THE BLACK–SCHOLES MODEL

The main advantage of the binomial model is that it is highly applicable for pricing

various types of options, including American type and other exotic options. This can be

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 72 -

interpret as an advantage to the Black–Scholes model. Actually, the two models have

similar features, because both of them follow the same assumptions. As a result, for

European options, the binomial model converges to on the Black–Scholes formula as the

number of the time steps increases. In other words, the binomial model provides discrete

approximation of to the continuous process underlying the Black–Scholes model.

However, this convergence is not smooth or uniform. That is why it is not

recommendable to extrapolate the numerical results for different � to the limit � � �.

Here we can observe the convergence of the binomial model up to 150 time steps with the

data, used in the following sample codes:

Figure 1. Convergence of binomial model to Black-Scholes model, using the sample

data from the below

BINOMIAL MODEL, IMPLEMENTED IN MATLAB

Let us first consider the most intuitive (and equally naive) realization of the binomial

method. This is essentially a program translation of the corresponding algorithm. Here we

tackle European put option with the following parameters:

% Binomial method 1

% Non-optimized version

% Parameters initializing

S0 = 5; K = 10; T = 1; r = 0.06; sigma = 0.3; M = 256; dt = T/M;

u = exp(sigma * sqrt(dt)); d = 1/u; p = (exp(r*dt) - d) / (u - d);

% Asset prices at time T

for j = 1 : M+1

 S(j, M+1) = S0 * d^(M+1-j) * u^(j-1);

end

% Option prices at time T

for j = 1 : M+1

 V(j, M+1) = max(K - S(j, M+1), 0);

end

% Option price at time zero

for i = M : -1 : 1

 for j = 1 : i

 V(j, i) = exp(-r*dt) * (p * V(j+1, i+1) + (1-p) * V(j, i+1));

 end

end

% Option price

V(1, 1)

Let us examine the code. First we can improve the memory consumption. In the

program we use one �� � ��-by-�� � �� matrix for the asset prices and one same-sized

matrix for the option prices. Considering an European option, we are interested only in the

asset prices at the last time layer, at maturity �. When we trace the tree backwards, at a

single step we use only the current and the previous layer. So it is quite possible to use

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 73 -

two single-dimensioned arrays (vectors) instead of a matrix – for the asset prices and the

option prices. Right now we reduced the complexity by memory from quadratic to linear.

Despite that, some additional enhancements are possible.

As we can notice, the corrections through time layers are made not simultaneously at

all nodes but node by node. So it is advisable to use only one vector instead of two. The

option price could be obtained only with one vector with �� � �� elements.

But we can go even further. Note however that the following optimization is

applicable only for European-typed options. Later the case of Americans will be discussed.

It is noticeable that the only time we operate with both S and V is the calculating of the

payoffs at time � and we can integrate this operation into a single vector V.

There is a little bit more work we can do. As the initializing loop is upward, on every

iteration the vector grows by one element. Since the memory allocation is comparatively

slow operation, we can consider preallocating the memory for the vector. The MathWorks’

official suggestion V = zeros(1, M+1) seems to be not the most efficient [6]: we use V(M+1) = 0.

The reason for this is simple – the second variant only allocates the memory, without

worrying about the internal values, which we are not interested in now.

The resulting code is presented:

% Binomial method 2

% Optimized by memory version

% Parameters initializing

S0 = 5; K = 10; T = 1; r = 0.06; sigma = 0.3; M = 256; dt = T/M;

u = exp(sigma * sqrt(dt)); d = 1/u; p = (exp(r*dt) - d) / (u - d);

% Asset prices at time T

V(M+1) = 0;

for j = 1 : M+1

 V(j) = S0 * d^(M+1-j) * u^(j-1);

end

% Option prices at time T

for j = 1 : M+1

 V(j) = max(K - V(j), 0);

end

% Option price at time zero

for i = M : -1 : 1

 for j = 1 : i

 V(j) = exp(-r*dt) * (p * V(j+1) + (1-p) * V(j));

 end

end

% Option price

V(1)

Now we will introduce more significant changes. Due to the interpretative behavior of

MATLAB, some optimizations are done by hand as MATLAB does not optimize the

intermediate code. Some of them are rather trivial, but the most important actions are to

make use of MATLAB’s built-in functions as much as possible, because they are fully

compiled and designed to run extremely efficiently [3].

To begin with, let us introduce the colon notation. Fortunately, the basic operators

work pretty well with vectors and matrices as well as with scalars, so the initializing loop is

replaced by V = S0 * d.^(M:-1:0) .* u.^(0:M). What is more, we can optimize the second loop in

the same manner, because scalars and vectors are naturally compatible in case of

arithmetic operations between them. So it follows that the option values � at time � could

be computed in such a way: V = max(K - S0 * d.^(M:-1:0) .* u.^(0:M), 0).

However, in spite of our efforts so far, it appears that we haven’t gained much profit.

This is because the complexity of the main loop is still ���	
�.

We can speed up the nested loop by removing unnecessary computations. The

discounting factor �
��� at each time step could be deferred until the end, where it

accumulates to a single �
�� factor. Furthermore, we can precompute � � � � � and get it

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 74 -

out of the loops. But the complexity remains unchanged; therefore we will try to remove

the inner loop using the aforementioned colon notation. Note that at every iteration the

length of � decreases by one; in the end � is a scalar [3]. The resulting code is here:

% Binomial method 3

% Vectorized version

% Parameters initializing

S0 = 5; K = 10; T = 1; r = 0.06; sigma = 0.3; M = 256; dt = T/M;

u = exp(sigma * sqrt(dt)); d = 1/u; p = (exp(r*dt) - d) / (u - d);

% Option prices at time T

V = max(K - S0 * d.^(M:-1:0) .* u.^(0:M), 0);

% Option price at time zero

q = 1 - p;

for i = M : -1 : 1

 V = p * V(2:i+1) + q * V(1:i);

end

V = exp(-r*T) * V;

% Option price

V

Here we can see how the execution time changes according to the applied

optimizations:

Table 1. Execution time of the three proposed variants, estimated by averaging over

1000 runs with MATLAB R2014a on a 2.3GHz dual-core x64 3GB 1333MHz DDR3

mobile computer

Name of code version � Execution time

(sec.)

Ratio

Binomial model 1 – Non-optimized ��� 0.525 -

Binomial model 2 – Partially

optimized

��� 0.0084 62.5

Binomial model 3 – Fully optimized ��� 0.0046 1.8

Binomial model 1 – Non-optimized ���� 4.735 -

Binomial model 2 – Partially

optimized

���� 0.0326 145

Binomial model 3 – Fully optimized ���� 0.0128 2.5

Binomial model 1 – Non-optimized ���� 40.25 -

Binomial model 2 – Partially

optimized

���� 0.130 308

Binomial model 3 – Fully optimized ���� 0.036 3.6

It can be seen that considering the exposed optimization, the overall progress is

expressed in decreasing the computational time about 115 times for � � ���, about 370

times for � � ���� and about 1120 times for � � ����. Here the ratio, corresponding to

the vectorization, is not dramatically high, but when increasing �, an impressive

performance leap will be observed.

FURTHER OPTIMIZATION

Following the mathematical model, the achieved results are far a good deal. If we

would like to optimize our program even further, we should change the approach. The

algorithm is pretty clear – we have to do some numerical transformation in the main loop.

In [3] using a binomial expansion is proposed. We can replace the vector arithmetic with

formation of a single sum using binomial coefficients. This can be done with ���� floating

point operations. The binomial formula could not be applied straightforward – some

additional numerical experiments are required. In order to avoid overflows and underflows,

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 75 -

logarithms may be used for the computational purposes. Finally, due to the fact that some

option values at � � � equal zero, the redundant computations should also be avoided to

improve performance [3].

PRICING AN AMERICAN OPTION

So far we have investigated how to find fair price of an European put option. The

case of American option is a bit more complicated. An American option differs from an

European by the right of exercising it at each time before the maturity � � � � �. This

feature is incorporated into the model by comparing the discounted expectation (the same

as European) with the option payoffs at every discrete time layer ������ and taking the

greater value into account. Because of this speciality, we are not able to apply some of the

optimizations discussed before. Our approach however will be to precalculate some

expressions in order to reuse them in the main loop. The code is exposed:

% Binomial method for American put option

% Optimized version

% Parameters initializing

S0 = 9; K = 10; T = 1; r = 0.06; sigma = 0.3; M = 256; dt = T/M;

u = exp(sigma * sqrt(dt)); d = 1/u; p = (exp(r*dt) - d) / (u - d);

% Precomputations

dpow = d.^(M:-1:0);

upow = u.^(0:M);

% Option prices at time T

V = max(K - S0 * dpow .* upow, 0);

% Option price at time zero

q = 1 - p; e = exp(-r*dt);

ep = e * p; eq = e * q;

for i = M : -1 : 1

 V = ep * V(2:i+1) + eq * V(1:i);

 Si = S0 * dpow(M-i+2:M+1) .* upow(1:i);

 V = max(max(K - Si, 0), V);

end

% Option price

V

As we can see, the precomputed power vectors of
 and � are used on each loop

iteration as well as at the initializing stage. Also some coefficients are prepared in

advance, but the most significant change is the way forming the option prices vector V at

each time layer. We continue to use the colon notation to access subvectors, hence the

storage requirements remain linear in �.

TRINOMIAL OPTION PRICING MODEL

Trinomial tree appears to be a natural generalization of binomial tree [5]. It is used for

its better accuracy and speed of convergence. It is seen as a more advanced model [1]. In

a trinomial model we consider three stock price developments: in one period the price

increases by a factor of
 with the probability ��, decreases by a factor of � with the

probability ��, or remains unchanged with the probability �� � � � �� � ��. Here we keep

the important property
� � �, which leads to a recombining tree and the other parameters

are as follows:

 � �
√	���				� � �

√	���

�� � � ����	 � �

���
	

�
���
	
� �

���

	

�
	

� �� � � �
���
	
� ����	

�
���
	
� �

���

	

�
	

� �� � � � �� � ���

Here we have � � � � � nodes in the �-th time layer and that is why the initialization

looks like a bit different. In order to keep the code clear and simple, we consider � �

�

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2015, том 54, серия 6.1

 - 76 -

and evaluate the option prices again with a single command, using colon notation. The

idea of the algorithm afterwards is quite similar to the discussed so far. The code follows:

% Trinomial method for European put option

% Vectorized version

% Parameters initializing

S0 = 5; K = 10; T = 1; r = 0.06; sigma = 0.3; M = 256; dt = T/M;

u = exp(sigma * sqrt(2*dt));

pd = ((exp(sigma*sqrt(dt/2))-exp(r*dt/2))/(exp(sigma*sqrt(dt/2))-exp(-sigma*sqrt(dt/2))))^2;

pu = ((exp(r*dt/2)-exp(-sigma*sqrt(dt/2)))/(exp(sigma*sqrt(dt/2))-exp(-sigma*sqrt(dt/2))))^2;

ps = 1 - pu - pd;

% Option prices at time T

V = max(K - S0 * u.^(-M:M), 0);

% Option price at time zero

for i = M : -1 : 1

 V = pu * V(3:2*i+1) + ps * V(2:2*i) + pd * V(1:2*i-1);

end

V = exp(-r*T) * V;

% Option price

V

In the trinomial model implementation we may confidently make use of all results

achieved so far. As described before, besides some superficial peculiarities, the program

flow stays the same. We use again the colon notation in initializing and computing option

prices. The output is equal to the corresponding binomial model realization except that

here we benefit an improved convergence.

CONCLUSION

In this paper we have proposed some important and useful optimizations of the

MATLAB code implementation. The binomial method, and its powerful extension the

trinomial method, are highly applicable for numerous types of options and that is why they

are widely used for option valuating. On the other hand, the main drawback of the model is

its relatively slow speed. Even for the fastest contemporary computational units the

binomial model may be a challenge, so the algorithm optimization is a matter of a crucial

importance.

REFERENCES

[1] Clifford, P., O. Zaboronski, Pricing Options Using Trinomial Trees, (2008),

{http://www2.warwick.ac.uk/fac/sci/maths/people/staff/oleg_zaboronski/fm/, Aug. 2015}

[2] Cox, J., S. Ross, M. Rubinstein, Option pricing: A Simplified Approach, Journal

of Financial Economics 7, 229-263, (1979)

[3] Higham, D. J., Nine Ways to Implement the Binomial Method for Option

Valuation in MATLAB, SIAM Review, Vol. 44, No. 4, 661-677, (2002)

[4] Seydel, R. U., Tools for Computational Finance, Springer-Verlag, (2009)

[5] Радков, П., Биномен модел на финансов пазар. Намиране на цената на

опция посредством биномни и триномни мрежи, (2014), {http://video-e.com/math/,

Aug. 2015}

[6] http://undocumentedmatlab.com/blog/preallocation-performance, {Aug. 2015}

ABOUT THE AUTHORS

Assoc. Prof. Juri Dimitrov Kandilarov, PhD, Department of Mathematics, University of

Rousse, Phone: +359 82 888 634, e-mail: ukandilarov@uni-ruse.bg.

Slavi Georgiev Georgiev, Third year Bachelor student, Financial Mathematics,

University of Rousse, e-mail: georgiev.slavi.94@gmail.com.

