On Some Varieties of Algebras Defined by Low Degree Identities

Tsetska Rashkova

Abstract

Some subalgebras of the $n \times n$ matrix algebra over the Grassmann algebra are investigated and low degree identities for these algebras are discussed. A special trace property is found giving an easy proof of the identities satisfied.

Key words: identities, varieties of algebras, Grassmann algebra, matrix algebras with Grassmann entries, standard polynomial

INTRODUCTION

In several papers $[7,8,9]$ the author investigated the PI-properties of some matrix algebras with Grassmann entries. We recall the definition of the infinite dimensional Grassmann algebra E as

$$
E=E(V)=K\left\langle e_{1}, e_{2}, \ldots \mid e_{i} e_{j}+e_{j} e_{i}=0 i, j=1,2, \ldots\right\rangle,
$$

where the field K has characteristic zero.
The algebra E is in focus of recent research in PI-theory. Its importance is connected with the structure theory for the T - ideals of identities of associative algebras developed by Kemer [4]. For some other applications of E one could see [8].

The significance of considering the matrix algebra $M_{n}(E)$ is confirmed by the following statement as the trivial isomorphism $E \otimes M_{n}(K) \cong M_{n}(E)$ holds:

Proposition 1 [3, Corollary 8.2.4]: For every PI-algebra R there exists a positive n such that $T(R) \supseteq T\left(M_{n}(E)\right)$, i.e. R satisfies all polynomial identities of the $n \times n$ matrix algebra $M_{n}(E)$ with entries from the Grassmann algebra.

Many of the PI-properties of E and $M_{n}(E)$ could be found in [2,5]. Here we formulate:

Proposition 2 [5, Corollary, p. 437]: The T-ideal $\operatorname{Id}(E)$ is generated by the identity $\left[x_{1}, x_{2}, x_{3}\right]=\left[x_{1}, x_{2}\right] x_{3}-x_{3}\left[x_{1}, x_{2}\right]=0$.

Proposition 3 [2, Lemma 6.1]: The algebra E satisfies $S_{n}\left(x_{1}, \ldots, x_{n}\right)^{k}=0$ for all $n, k \geq 2$ and $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in \operatorname{Sym}(n)}(-1)^{\sigma} x_{\sigma(1)} \ldots x_{\sigma(n)}$ being the standard identity.

Proposition 4 [2, Corollary 6.6]: The algebra $M_{n}(E)$ does not satisfy the identity

$$
S_{m}^{n}\left(X_{1}, \ldots, X_{m}\right)=0 \text { for any } m
$$

It is an open question [1, p.356] to describe the identities of minimal degree for $M_{n}(E)$. Even for $n=2$ we know very little. There is a result of Vishne [10] that the minimal degree of an identity for $M_{2}(E)$ is 8 and he gives the explicit form of two multilinear polynomials being identities in the algebra. Their definition is given in [10].

In the general case a result of Popov [6] states that the matrix algebra $M_{n}(E)$ has no identities of degree $4 n-2$.

In the paper we investigate some varieties of algebras defined by low degree identities and give examples of subalgebras of the $n \times n$ matrix algebra over the Grassmann algebra belonging to the corresponding varieties. A special trace property is found giving an easy proof for the stated results.

LAYOUT

THE VARIETY \mathfrak{R}_{1} DEFINED BY THE IDENTITY $\left[x_{1}, x_{2}, x_{3}\right] x_{4}=0$
Straightforward consequences of the considered identity lead to
Proposition 5: The elements of \mathfrak{R}_{1} satisfy the identities

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right] x_{3} x_{4}=x_{3}\left[x_{1}, x_{2}\right] x_{4} ;\left[x_{1}, x_{2}\right]\left[x_{1}, x_{3}\right] x_{4}=0 ;} \\
& S_{2}\left(x_{1}, x_{2}\right) S_{3}\left(y_{1}, y_{2}, y_{3}\right)=0 ; S_{3}\left(y_{1}, y_{2}, y_{3}\right) S_{2}^{2}\left(x_{1}, x_{2}\right)=0 ; S_{3}^{2}\left(x_{1}, x_{2}, x_{3}\right)=0 .
\end{aligned}
$$

Proof: The first identity is just another form of $\left[x_{1}, x_{2}, x_{3}\right] x_{4}=0$.
For proving that $[x, y, z] B=0$ leads to the identity $[x, y][y, z] B=0$ we use the trivial identities $[x y, y]=[x, y] y$ and $[x y, z]=x[y, z]+[x, z] y$. Thus

$$
0=[[x y, y], z] B=[[x, y] y, z] B=[x, y][y, z] B+[x, y, z] y B=[x, y][y, z] B .
$$

The third identity follows from the second one and the presentation

$$
S_{3}\left(x_{1}, x_{2}, x_{3}\right)=S_{2}\left(x_{1}, x_{2}\right) x_{3}+S_{2}\left(x_{2}, x_{3}\right) x_{1}+S_{2}\left(x_{3}, x_{1}\right) x_{2} .
$$

Analogously using $x_{5}\left[x_{1}, x_{2}\right]\left[x_{1}, x_{3}\right] x_{4}=0$ we get $S_{3}\left(y_{1}, y_{2}, y_{3}\right) S_{2}^{2}\left(x_{1}, x_{2}\right)=0$.
Using the above representation of $S_{3}\left(x_{1}, x_{2}, x_{3}\right)$ we get that all summands in $S_{3}^{2}\left(x_{1}, x_{2}, x_{3}\right)$ are of type $S_{2}\left(x_{i}, x_{j}\right) x_{u} S_{2}\left(x_{i}, x_{k}\right) x_{v}$, where the indices take different values from the set $\{1,2,3\}$. Due to $\left[x_{1}, x_{2}\right] x_{3} x_{4}=x_{3}\left[x_{1}, x_{2}\right] x_{4}$ the summands of $S_{3}^{2}\left(x_{1}, x_{2}, x_{3}\right)$ could be written as $x_{u} S_{2}\left(x_{i}, x_{j}\right) S_{2}\left(x_{i}, x_{k}\right) x_{v}$ and the identity $[x, y][y, z] B=0$ gives $S_{3}^{2}\left(x_{1}, x_{2}, x_{3}\right)=0$.

Now we define an algebra, different from the algebra E, from the variety \mathfrak{R}_{1}.
Let $\alpha_{2}, \ldots, \alpha_{n}$ be fixed elements of the field K. We consider the n-th dimensional
matrix algebra $A M_{n}(E)$ of the matrices of type

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
\alpha_{2} x_{1} & \alpha_{2} x_{2} & \cdots & \alpha_{2} x_{n} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{n} x_{1} & \alpha_{n} x_{2} & \cdots & \alpha_{n} x_{n}
\end{array}\right) .
$$

Theorem 1: The algebra $A M_{n}(E)$ belongs to the variety \mathfrak{R}_{1}.
For proving the theorem we use the following
Proposition 6: For any $A, B, C \in A M_{n}(E)$ the identity $\operatorname{Tr}[A, B, C]=0$ holds for $\operatorname{Tr} A$ being the trace of the matrix A.

Proof: Let $A=\left(a_{i j}\right)$ for $a_{1 j}=x_{j}, a_{i j}=\alpha_{i} x_{j}, 1<i \leq n, j=1, \ldots, n$ and $B=\left(b_{i j}\right)$ for $b_{1 j}=y_{j}, b_{i j}=\alpha_{i} y_{j}, 1<i \leq n, j=1, \ldots, n$. Then

$$
\begin{aligned}
& \operatorname{Tr}(A B)=x_{1} y_{1}+x_{2} \alpha_{2} y_{1}+\cdots+x_{n} \alpha_{n} y_{1}+\alpha_{2} x_{1} y_{2}+\alpha_{2} x_{2} \alpha_{2} y_{2}+\cdots+\alpha_{2} x_{n} \alpha_{n} y_{2} \\
& +\alpha_{3} x_{1} y_{3}+\alpha_{3} x_{2} \alpha_{2} y_{3}+\cdots+\alpha_{3} x_{n} \alpha_{n} y_{3}+\cdots+\alpha_{n} x_{1} y_{n}+\alpha_{n} x_{2} \alpha_{2} y_{n}+\cdots+\alpha_{n} x_{n} \alpha_{n} y_{n} \\
& =x_{1}\left(y_{1}+\alpha_{2} y_{2}+\ldots+\alpha_{n} y_{n}\right)+\alpha_{2} x_{2}\left(y_{1}+\alpha_{2} y_{2}+\ldots+\alpha_{n} y_{n}\right)+\cdots \\
& +\alpha_{n} x_{n}\left(y_{1}+\alpha_{2} y_{2}+\cdots+\alpha_{n} y_{n}\right) \\
& =x_{1} \operatorname{Tr} B+\alpha_{2} x_{2} \operatorname{Tr} B+\cdots+\alpha_{n} x_{n} \operatorname{Tr} B=\operatorname{Tr} A \operatorname{Tr} B .
\end{aligned}
$$

Thus we get $\operatorname{Tr}[A, B]=[\operatorname{Tr} A, \operatorname{Tr} B]$ and $\operatorname{Tr}[A, B, C]=[\operatorname{Tr} A, \operatorname{Tr} B, \operatorname{Tr} C]=0$.

Proof of Theorem 1: Let $\left[X_{1}, X_{2}, X_{3}\right]=\left(a_{i j}\right), \quad X_{4}=\left(b_{i j}\right)$ and [$\left.X_{1}, X_{2}, X_{3}\right] X_{4}=\left(c_{i j}\right)$. Using the notation from Proposition 6 for the corresponding entries $\left(a_{i j}\right)$ and ($b_{i j}$) we have

$$
\begin{aligned}
c_{k s} & =\alpha_{k} x_{1} y_{s}+\alpha_{k} x_{2} \alpha_{2} y_{s}+\cdots+\alpha_{k} x_{n} \alpha_{n} y_{s} \\
& =\alpha_{k}\left(x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}\right) y_{s}=\alpha_{k} \operatorname{Tr}\left[X_{1}, X_{2}, X_{3}\right] y_{s}=0 .
\end{aligned}
$$

Applying Proposition 5 and Theorem 1 we get partial cases when Proposition 4 does not hold, namely

Proposition 7: For the matrix algebra $A M_{2}(E)$ there exists $m=3$ such that the identity $S_{m}^{2}\left(X_{1}, \ldots, X_{m}\right)=0$ holds. For the matrix algebra $A M_{3}(E)$ there exists $m=2$ such that the identity $S_{m}^{3}\left(X_{1}, \ldots, X_{m}\right)=0$ holds.

THE VARIETY \mathfrak{R}_{2} DEFINED BY THE IDENTITY $x_{4}\left[x_{1}, x_{2}, x_{3}\right]=0$
Proposition 8: The elements of \mathfrak{R}_{2} satisfy the identities

$$
\begin{aligned}
& x_{4}\left[x_{1}, x_{2}\right] x_{3}=x_{4} x_{3}\left[x_{1}, x_{2}\right] \\
& x_{4}\left[x_{1}, x_{2}\right]\left[x_{1}, x_{3}\right]=0 \\
& S_{3}\left(y_{1}, y_{2}, y_{3}\right) S_{2}\left(x_{1}, x_{2}\right)=0 \\
& S_{2}^{2}\left(x_{1}, x_{2}\right) S_{3}\left(y_{1}, y_{2}, y_{3}\right)=0 \\
& S_{2}^{3}\left(x_{1}, x_{2}\right)=0, \quad S_{3}^{2}\left(x_{1}, x_{2}, x_{3}\right)=0
\end{aligned}
$$

In [9] we consider the X - figural algebra of matrices $A_{n \times n}=\left(a_{i j}\right)$ over the Grassmann algebra with nonzero elements only on the two diagonals such that $a_{i i}=a_{i, n-i+1}$ for $i=1, \ldots, n$. It is easily seen that $\operatorname{Tr}\left[X_{1}, X_{2}, X_{3}\right]=0$ for X_{1}, X_{2}, X_{3} being from the X - figural algebra and $X_{4}\left[X_{1}, X_{2}, X_{3}\right]=0$. Thus we have

Proposition 9: The X - figural algebra belongs to the variety \mathfrak{R}_{2}.
Theorem 4 in [9] gives that the T-ideal of this algebra is generated by $X_{4}\left[X_{1}, X_{2}, X_{3}\right]=0$. As the T-ideal of $M_{2}(E)$ is contained in the T-ideal generated by $X_{4}\left[X_{1}, X_{2}, X_{3}\right]=0$ we get

Proposition 10: Any algebra from the variety \mathfrak{R}_{2} satisfies the identities of $M_{2}(E)$.
Now we consider the following generalization in the even case of the X - figural algebra, namely the $2 n^{2}$-th dimensional matrix algebra $D M_{2 n}(E)$ of the matrices of type

$$
\left(\begin{array}{cccccccc}
a_{1} & a_{12} & \cdots & \cdots & \cdots & \cdots & a_{1,2 n-1} & a_{1} \\
0 & a_{2} & a_{23} & \cdots & \cdots & a_{2,2 n-2} & a_{2} & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \cdots & \cdots & \ldots \\
0 & \cdots & 0 & a_{n} & a_{n} & 0 & \cdots & 0 \\
0 & \ldots & 0 & a_{n+1} & a_{n+1} & 0 & \cdots & 0 \\
\ldots & \ldots & \cdots & \cdots & \cdots & \ldots & \ldots & \cdots \\
0 & a_{2 n-1} & a_{2 n-1,3} & \cdots & \cdots & a_{2 n-1,2 n-2} & a_{2 n-1} & 0 \\
a_{2 n} & a_{2 n, 2} & \cdots & \cdots & \cdots & \cdots & a_{2 n, 2 n-1} & a_{2 n}
\end{array}\right) .
$$

The motivation is connected with the importance of the algebra of the uppertriangular matrices both in the classical case of a field and over the algebra E as well [3]. The $n \times n$ building blocks of a matrix in $D M_{2 n}(E)$ include an uppertriangular matrix, its right vertical symmetry, a lowertriangular matrix and its left vertical symmetry.

Theorem 2: The algebra $D M_{2 n}(E)$ satisfies the identity

$$
X_{11}\left[X_{12}, X_{13}, X_{14}\right] X_{21}\left[X_{22}, X_{23}, X_{24}\right] \ldots X_{n 1}\left[X_{n 2}, X_{n 3}, X_{n 4}\right]=0
$$

Proof: Let $X_{12}=\left(a_{i j}\right), \quad X_{13}=\left(b_{i j}\right)$ and $X_{14}=\left(c_{i j}\right)$ be from $D M_{2 n}(E)$ and $\left[X_{12}, X_{13}, X_{14}\right]=\left(m_{i j}\right)$. Modulo the Grassmann identity we get

$$
\begin{aligned}
& m_{i i}+m_{2 n-i+1, i}=\left[\left[a_{i}, b_{2 n-i+1}\right]+\left[a_{2 n-i+1}, b_{i}\right], c_{i}+c_{2 n-i+1}\right]=0, i=1, \ldots, n-1 \\
& m_{n}=\left[a_{n}, b_{n}, c_{n}\right]=0, m_{n+1}=\left[a_{n+1}, b_{n+1}, c_{n+1}\right]=0
\end{aligned} .
$$

This gives that each matrix $X_{i 1}\left[X_{i 2}, X_{i 3}, X_{i 4}\right]$ has zero entries on both its diagonals. The multiplication of two such matrices has additionally zero ($n-1$)-th and ($n+2$)-th rows. The next multiplication leads to zero entries of the $(n-2)$-th and $(n+3)$-th rows as well. Thus the n-th multiplication will result into a zero matrix.

Proposition 11: In $D M_{2 n}(E)$ the following identities hold:

$$
\begin{gathered}
S_{2}^{3 n}\left(X_{1}, X_{2}\right)=0 \\
\left(S_{3}^{2}\left(X_{1}, X_{2}, X_{3}\right) S_{2}^{2}\left(Y_{1}, Y_{2}\right)\right)^{n}=0 \\
\left(S_{3}\left(X_{1}, X_{2}, X_{3}\right) S_{2}\left(Y_{1}, Y_{2}\right)\right)^{k}, \quad n=2 k \\
\left(S_{3}\left(X_{1}, X_{2}, X_{3}\right) S_{2}\left(Y_{1}, Y_{2}\right)\right)^{k} S_{3}\left(X_{1}, X_{2}, X_{3}\right) S_{2}\left(Y_{1}, Y_{2}\right)=0, \quad n=2 k+1 .
\end{gathered}
$$

THE VARIETY \mathfrak{R}_{3} DEFINED BY THE IDENTITY $\left[x_{1}, x_{2}, x_{3}\right] x_{4}\left[x_{5}, x_{6}, x_{7}\right]=0$
Proposition 12: The elements of \mathfrak{R}_{3} satisfy the identities

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]\left[x_{1}, x_{3}\right] x_{4}\left[x_{5}, x_{6}\right]\left[x_{5}, x_{7}\right]=0} \\
& S_{2}\left(x_{1}, x_{2}\right) S_{3}\left(y_{1}, y_{2}, y_{3}\right) S_{2}^{2}\left(x_{3}, x_{4}\right)=0 . \\
& S_{2}^{2}\left(x_{1}, x_{2}\right) S_{3}\left(y_{1}, y_{2}, y_{3}\right) S_{2}\left(x_{3}, x_{4}\right)=0
\end{aligned}
$$

Now we consider the $(4 n+1)$-th dimensional matrix algebra $C M_{2 n+1}(E)$ of the
matrices of type $\left(\begin{array}{cccc}a_{11} & 0 & \ldots & 0 \\ a_{21} & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & 0 & \ldots & 0 \\ a_{n+1,1} & a_{n+1,2} & \ldots & a_{n+1,2 n+1} \\ a_{n+2,1} & 0 & \ldots & 0 \\ a_{n+3,1} & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ a_{2 n+1,1} & 0 & \ldots & 0\end{array}\right)$.
Theorem 3: The matrix algebra $C M_{2 n+1}(E)$ belongs to the variety \mathfrak{R}_{3}.

Proof: Let $A, B, C, D \in C M_{2 n+1}(E)$. For $[A, B, C]=\left(m_{i j}\right)$ we have $m_{11}=m_{n+1, n+1}=0$
In $[A, B, C] D=\left(s_{i j}\right)$ we get $s_{n+1,2}=s_{n+1,3}=\ldots=s_{n+1,2 n+1}=0$. Thus $[A, B, C] D\left[A_{1}, B_{1}, C_{1}\right]=0$.

We point that if we change the places of the $(n+1)$-th row of $C M_{2 n+1}(E)$ and of any of the other ones we get representatives of $2 n$ more classes of algebras all of which belong to \mathfrak{R}_{3}. There are too many other $(4 n+1)$-th dimensional subalgebras of $M_{2 n+1}(E)$ belonging to the variety \Re_{3} as well.

The paper is partially supported by Grant I 02/08 "Computer and Combinatorial Methods in Algebra and Applications" of the Bulgarian National Science Fund.

REFERENCES

[1]. Belov A., L. Rowen. Computational Aspects of Polynomial Identities. Research Notes in Mathematics. Volume 9. A K Peters, 2005.
[2]. Berele A., A. Regev. Exponential growth for codimensions of some P.I. algebras. J. Algebra. Volume 241, 2001, 118-145
[3]. Giambruno A., M. Zaicev. Polynomial Identities and Assymptotic Methods. Math. Surveys and Monographs. Volume 122. American Mathematical Society, 2005.
[4]. Kemer A.R. Ideals of Identities of Associative Algebras. Trans. Math. Monogr. Volume 87. American Mathematical Society, 1991.
[5]. Krakowski D., A. Regev. The polynomial identities of the Grassmann algebra. Trans. Amer. Math. Soc. Volume 181, 1973, 429-438.
[6]. Popov A. On the minimal degree identities of the matrices over the Grassmann algebra. American University of Blagoevgrad, preprint, 1997.
[7]. Rashkova Ts. Identities of $M_{2}(E)$ are identities for classes of subalgebras of $M_{n}(E)$ as well. Proceedings of Union of Scientists - Ruse. b. 5. Volume 10, 2013, 7-13.
[8]. Rashkova Ts. On the nilpotency in matrix algebras with Grassmann entries. Serdica Math. J. Volume 38, 2012, 79-90.
[9]. Rashkova Ts. The T - ideal of the X - figural algebra. Proceedings of Union of Scientists - Ruse. book 5. Volume 11, 2014, 7-13.
[10]. Vishne U. Polynomial identities of $M_{2}(G)$. Commun. in Algebra. Volume 30(1), 2002, 443-454.

ABOUT THE AUTHOR

Assoc. Prof. Tsetska Rashkova, PhD, Department of Mathematics, Faculty of Natural Sciences and Education, University of Ruse, 8 Studentska Str., 7017 Ruse, Bulgaria, Phone: (++359 82) 888 489, E-mail: tsrashkova@uni-ruse.bg

