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Abstract: Some subalgebras of the nn×  matrix algebra over the Grassmann algebra  are 

investigated and low degree identities for these algebras are discussed. A special trace property is found 

giving an easy proof of the identities satisfied. 
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INTRODUCTION  

In several papers [7,8,9] the author investigated the PI-properties of some matrix 

algebras with Grassmann entries. We recall the definition of the infinite dimensional 

Grassmann algebra  as  
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where the field K  has characteristic zero. 

The algebra E  is in focus of recent research in PI-theory. Its importance is 

connected with the structure theory for the T - ideals of identities of associative algebras 

developed by Kemer [4]. For some other applications of E  one could see [8]. 

The significance of considering the matrix algebra  is confirmed by the 

following statement as the trivial isomorphism  holds: 

Proposition 1  [3, Corollary 8.2.4]: For every PI-algebra  there exists a positive  

such that , i.e.  satisfies all polynomial identities of the  matrix 

algebra  with entries from the Grassmann algebra.  

Many of the PI-properties of  and  could be found in [2,5]. Here we 

formulate: 

Proposition 2  [5, Corollary, p. 437]: The -ideal  is generated by the identity 

.  

Proposition 3  [2, Lemma 6.1]: The algebra  satisfies  for all 

 and  being the standard identity.  

Proposition 4  [2, Corollary 6.6]: The algebra  does not satisfy the identity  

 for any . 

 It is an open question [1, p.356] to describe the identities of minimal degree for 

. Even for  we know very little. There is a result of Vishne [10] that the 

minimal degree of an identity for  is  and he gives the explicit form of two  

multilinear polynomials being identities in the algebra. Their definition is given in [10]. 

In the general case a result of Popov [6] states that the matrix algebra  has 

no identities of degree . 

In the paper we investigate some varieties of algebras defined by low degree 

identities and give examples of subalgebras of the  matrix algebra over the 

Grassmann algebra belonging to the corresponding varieties. A special trace property is 

found giving an easy proof for the stated results. 
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LAYOUT 

THE VARIETY 
1

ℜ  DEFINED BY THE IDENTITY 0=],,[
4321

xxxx  

Straightforward consequences of the considered identity lead to 

Proposition 5: The elements of 
1

ℜ satisfy the identities 
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Proof: The first identity is just another form of 0=],,[
4321

xxxx . 

For proving that  leads to the identity   we use the 

trivial identities  and . Thus   

. 

The third identity follows from the second one and the presentation  

. 

Analogously using  we get . 

Using the above representation of  we get that all summands in 

 are of type , where the indices take different values 

from the set . Due to  the summands of  

could be written as  and the identity  gives 

. 

Now we define an algebra, different from the algebra E , from the variety 
1

ℜ . 

Let  be fixed elements of the field . We consider the -th dimensional 

matrix algebra  of the matrices of type . 

Theorem 1: The algebra  belongs to the variety 
1

ℜ . 

For proving the theorem we use the following  

Proposition 6: For any  the identity  holds for 

 being the trace of the matrix . 

Proof: Let  for  and  for 

. Then  
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Thus we get ],[=],[ TrBTrABATr  and 0],,[=],,[ =TrCTrBTrACBATr .  
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Proof of Theorem 1: Let )(=],,[
321 ij

aXXX , )(=
4 ij

bX  and  

)(=],,[
4321 ij

cXXXX . Using the notation from Proposition 6 for the corresponding 

entries )(
ij
a  and )(

ij
b  we have  
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Applying Proposition 5 and Theorem 1 we get partial cases when Proposition 4 does 

not hold, namely 

Proposition 7: For the matrix algebra  there exists  such that the 

identity holds. For the matrix algebra  there exists  

such that the identity holds. 

 

THE VARIETY  DEFINED BY THE IDENTITY  

Proposition 8: The elements of satisfy the identities 
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In [9] we consider the - figural algebra of matrices  over the 

Grassmann algebra with nonzero elements only on the two diagonals such that 

 for . It is easily seen that  for  being 

from the - figural algebra and . Thus we have  

Proposition 9: The - figural algebra belongs to the variety . 

Theorem 4 in [9] gives that the -ideal of this algebra is generated by 

. As the -ideal of  is contained in the -ideal generated by 

 we get 

Proposition 10: Any algebra from the variety  satisfies the identities of . 

Now we consider the following generalization in the even case of the - figural 

algebra, namely the -th dimensional matrix algebra  of  the matrices of type  

. 
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The motivation is connected with the importance of the algebra of the uppertriangular 

matrices both in the classical case of a field and over the algebra  as well [3]. The  

building blocks of a matrix in  include an uppertriangular matrix, its right vertical 

symmetry, a lowertriangular matrix and its left vertical symmetry.  

Theorem 2: The algebra )(
2

EDM
n

 satisfies the identity 

. 

Proof: Let ,  and  be from  and 

. Modulo the Grassmann identity we get 

. 

This gives that each matrix  has zero entries on both its diagonals. 

The multiplication of two such matrices has additionally zero -th and -th rows. 

The next multiplication leads to zero entries of the -th and -th rows as well. 

Thus the -th multiplication will result into a zero matrix. 

Proposition 11:  In )(
2

EDM
n

 the following identities hold: 

 

 

 

. 

  

THE VARIETY  DEFINED BY THE IDENTITY  

Proposition 12: The elements of 
3

ℜ satisfy the identities 

. 

 

 Now we consider the )14( +n -th dimensional matrix algebra of the  

matrices of type . 

 

Theorem 3: The matrix algebra )(
12

ECM
n+

 belongs to the variety 
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ℜ . 
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Proof: Let . For  we have 

. In  we get . Thus 

0],,[],,[
111

=CBADCBA . 

We point that if we change the places of the )1( +n -th row of )(
12

ECM
n+

 and of any 

of the other ones we get representatives of n2  more classes of algebras all of which 

belong to 
3

ℜ . There are too many other )14( +n -th dimensional subalgebras of 

)(
12

EM
n+

 belonging to the variety 
3

ℜ as well. 
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