SAT-9.3-1-HP-05

Study Dependence on Natural Frequencies of the Pressure Pipeline in Hydraulic System – Part I

Miroslav Petrov, Krasimir Ormandzhiev, Hristofor Lazarov

Изследване зависимостта на собствените честоти на нагнетателен тръбопровод в хидравлична задвижваща система – част І

Мирослав Петров, Красимир Орманджиев, Христофор Лазаров

Study Dependence on Natural Frequencies of the Pressure Pipeline in Hydraulic System – Part I: The article dealt with regression models of natural frequencies pressure pipeline in hydraulic system as a function of strongly influencing factors: length of straight sections, radius of curvature and angle between the straight sections. The plan of the experiment and deduced regression models are presented in tables. The results of the studies are presented in graphical form.

Key words: natural frequency, hydraulic system, pressure pipeline, regression model.

въведение

Работата на хидравличните задвижващи системи често е съпроводена с появата на завишени нива на шум и вибрации, които при определени условия могат да доведат и до поява на явлението малоциклова умора. Ето защо изследването на това явление би довело до обосновано изменение на силно влияещите параметри и повиши надежността на системата. Изследването на причините за появата на такива явления в нагнетателните тръбопроводи на системата би довело до повишаване на експлоатационната якост.

При промяна температурата на работния флуид се измененят параметрите плътност, вискозитет, свиваемост, топлопроводност и др., които оказват съществено влияние върху протичащите динамични процеси в системата [5, 8]. Влиянието на температурата на работния флуид върху работата на следяща електрохидравлична система е отчетено в [1, 6]. В [2] е представено изменението на собствените честоти на електрохидравлична система при промяна температурата на работния флуид. В [3, 4, 7, 9, 10, 11] са изследвани електхирохидравлични системи за възвратнопостъпателно и възвратно-въртеливо движение при различни режими на работа.

В хидравличните задвижващи системи се използват тръбопроводи с поредица от линейни и криволинейни участъци. Тези основни конструктивни размери влияят съществено върху собствените честоти в нагнетателните тръбопроводи.

Фиг.1 Схема на задвижваща електрохидравлична система

1 - сервоклапан; 2, 6 – нагнетателен тръбопровод; 3 – хидромотор; 4 – обект на регулиране (OP); 5 – сензор за обороти; *M*_T – товарен момент; ω – ъглова скорост; *p*_s – захранващо налягане.

Целта на настоящата работа е извеждане на регресионни математически модели на собствените честоти на линеен нагнетателен тръбопровод от задвижваща електрохидравлична система. Изведените модели е необходимо да отчитат изменението на материалните характеристики в следствие на изменение на температурата при различни материали и основни конструктивни размери на тръбопровода (линейни участъци с дължини l_1 и l_2 , радиус на закръгление и ъгъл между линейните участъци - R и α), като даде възможност за инженерна бърза проверка на очакваните собствени честоти.

Извеждане на регресионните статистически модели се основава на проведени числени аксперименти базирани на Метода ма крайните елемени (МКЕ).

Схема на задвижваща електрохидравлична система с ротационен изпълнителен механизъм е показана на фиг.1.

МАТЕМАТИЧЕН МОДЕЛ

1. Зависимост на модула на обемна еластичност на работния флуид от температурата:

В общия случай модулът на обемна еластичност на работния флуид е функция на температурата и налягането B = B(T, p):

$$\lg \frac{B_{T_1}}{B_{T_2}} = a(T_2 - T_1)$$
(1)

където: T_1 , T_2 - различни температури на работния флуид; B_{T_1} , B_{T_2} - модули на обемна еластичност съответно при температури T_1 и T_2 ; $a = 2 \times 10^{-3}$.

2. Зависимост на модула на обемна еластичност на работния флуид от налягането:

$$B_{\rho} = B_0 \left(1 + b \frac{p}{B_0} \right) \tag{2}$$

където: B_p , B_0 - модули на обемна еластичност съответно при налягане p и атмосферно налягане p_a , ($p_a = 10^5 Pa$); b = 5.3.

3. Зависимост между плътността и температурата на работния флуид:

$$\rho = \rho_{15} - \rho_{15} \alpha_{\rho 15} (T - 15) \tag{3}$$

където: ρ , ρ_{15} - плътности на работния флуид при температура *T* и при температура $T = 15^{\circ}C$; $\alpha_{o15} = 0.0007$.

За провеждане на числения експеримент е използван параметричен 3D модел в средата на продукт Cosmos/M реализиращ MKE. Използвани са тип крайни елемени: SOLID с приложени характеристики на използваните материали по литературни данни с отчитане на изменението на характеристиките зависими от температурата.

Параметрите използвани при анализа се изменят в следните граници: $\delta_{\text{тр}}$ = 0.001 ÷ 0,003 [m] - дебелина на тръбата, използвана стъпка 0,5 [mm]; l = 1,5 ÷ 3 [m] – дължина, използвана стъпка 0,5 [m]; Етр. – Модул на линейна еластичност: за тръбопровод от стомана със съдържание на въглерод С < 0.3%, Етр. = 212,14.10⁹-t[°C].110.10⁶[Pa] по литературни данни; за тръбопровод от мед марка М1 859-2001 Е_{тр.} = 118,1.10⁹-t[°C].40.10⁶,[Ра] по литературни данни; за тръбо-ГОСТ провод от титан марка АТ-6 Е_{тр} = 107532,4-32,10426.t[°C]-0,1049864.t²[°C], [МРа]. Модела е изведен със следните характеристики за точност и адекватност: Средна процентна грешка 0,149%, коефициент на множествена корелация R = 0,999674, стойност на критерия на фишер F =766.4234, F_{таб}=199,5, при степени на свобода $v_1=2, v_2=1$ и ниво на значимост $\alpha=0,05$, (R) е значим при F> F_{таб} ; за тръбопровод от алуминий марка DIN225 EN AC-45000 E_{то.} = 69843.98-37.26757.t[°C]- 0.036304.t²[°C], [МРа] модела е изведен със следните характеристики за точност и адекватност: Средна процентна грешка 0,112%, коефициент на множествена корелация R = 0,998969, стойност на критерия на фишер F = 242.0855, F_{таб}=199,5, при степени на свобода $v_1=2$, $v_2=1$ и ниво на значимост $\alpha=0,05$ (R) е значим при F> F_{Tab} ; μ_{TD} – коефицент на Поасон: за тръбопровод от стомана С < 0.3% µтр. = 0,28; за тръбопровод от мед марка M1, µто = 0,33; за тръбопровод от титан марка AT-6, µто =0,35; за тръбопровод от алуминий марка DIN225 EN AC-45000, µтр. =0,3. ртр. – плътност на материала: за тръбопровод от стомана C < 0.3%, $\rho_{\text{тр}}$ = 7850 [kg/m³]; за тръбопровод от мед марка M1, ρ_{тр.} = 8600 [kg/m³]; за тръбопровод от титан марка AT-6, ρ_{тр.} = 4720 [kg/m³]; за тръбопровод от алуминий марка DIN225 EN AC-45000, ртр = 2670 [kg/m³]. В_{фл.} =2,1.10^{9.(-0.002.(t-t0))}, където t₀=15[°C] – обемна еластичност на флуида; ρ_{фл.} = 880-880.7^{-4.(t-t₀)} [kg/m³] - плътност на флуида; t = 15 ÷ 80 [°C] – работна температура, използвани стъпки 15, 40, 60 и 80 [°С];

Крайно елементния модел е линеен и запънат в двата края. За получаване на резултатите е приложен класически анализ за определяне на собствените честоти.

На фиг.2 са показани резултати от експеримент №46, получени при $\delta_{тр.}$ = 1 mm, D_{вът.} = 10 mm, ℓ =2,5 m, E_{тр.} =117 GPa, $\mu_{тр.}$ =0,33, $\rho_{тр.}$ = 8600 kg/m³, B_{фл.}= GPa, $\rho_{\phi n.}$ =880 kg/m³, t = 15° C.

Фиг.2 Първите 3 собствени честоти и форма за тръбопровода

Управляващи фактори: X₁ = $\delta_{\tau p.}$ = 0.001÷0,003 [m] - дебелина на тръбата, използвана стъпка 0,5 [mm]; X₂ = ℓ = 1,5 ÷ 2,5 [m] – дължина, използвана стъпка 0,5 [m]; X₃ = E_{тр.} – Модул на линейна еластичност: X₄ = $\mu_{\tau p.}$ – коефицент на Поасон: X₅ = $\rho_{\tau p.}$ – плътност на материала: X₆ = B_{фл.} =2.1[GPa]*10^(-0.002.(t-t₀)), където t₀=15[°C] – обемна еластичност на флуида; X₇ = $\rho_{\phi n.}$ = 880-880*7е-4.(t-t₀) [kg/m³] - плътност на флуида; X₈ = t = 15 ÷ 80 [°C] – работна температура, използвани стъпки 15, 40, 60 и

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, Volume 55, book 1.2. НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2016, Том 55, серия 1.2

80 [°C]; Целеви функции: Y₁= f₁ [Hz] – първа собствена честота; Y₂= f₂ [Hz] – втора собствена честота; Y₃= f₃ [Hz] – трета собствена честота.

Резултати от извършения числен експеримент по МКЕ

Планът на експеримента е приведен със съкращение в таб. 1.

Таблица 1.

Nº	δ _{τρ.}	L	E _{τp.}	μ_{TD}	$\rho_{TP.}$	E _{¢.}	ρ _{φ.}	t	f ₁	f ₂	f ₃
-	m	m	GPa	-	kg/m ³	GPa	kg/m ³	°C	Hz	Hz	Hz
1	0.0010	2	210.00	0.28	7850	2.100	880.0	15	17.08	47.06	92.19
2	0.0015	2	210.00	0.28	7850	2.100	880.0	15	18.57	51.15	100.20
18	0.0020	2	116.50	0.33	8600	1.872	864.4	40	14.18	39.06	76.51
19	0.0025	2	116.50	0.33	8600	1.872	864.4	40	14.98	41.25	80.78
20	0.0030	2	116.50	0.33	8600	1.872	864.4	40	15.74	43.36	84.90
45	0.0030	2.5	210.00	0.28	7850	2.100	880.0	15	14.12	38.89	76.18
46	0.0010	2.5	117.00	0.33	8600	2.100	880.0	15	7.91	21.80	42.72
47	0.0015	2.5	117.00	0.33	8600	2.100	880.0	15	8.56	23.59	46.22
245	0.0030	1.5	107.03	0.35	4720	2.100	880.0	15	35.23	96.95	189.69
319	0.0025	3	66.63	0.3	2670	1.557	540.0	80	8.36	23.03	45.14
320	0.0030	3	66.63	0.3	2670	1.557	540.0	80	8.91	24.54	48.09

Получените графични зависимости за собствени честоти - f₁, f₂, f₃, от числения експеримент са показани на фиг. 3, 4, 5, 6, 7 и 8:

Фиг.3 Изменение на f_1 във функция от дебелината δ и дължината ℓ на тръбата

Фиг.5. Изменение на f₁, f₂ и f₃ във функция от дебелината на тръбата δ_{mp} : материал Си, ℓ =3 m, t=80° С

Фиг.4. Изменение на f_1 , f_2 и f_3 във функция от дължината ℓ : материал Си, $\delta_{mp} = 1$ mm, t=80° С

Фиг.7. Изменение на f₁ за медна тръба във функция от дължината на тръбата и температурата на флуида за (t= 15, 40, 60 и 80 °C) при дебелина δ=0.001 m

Фиг.8. Изменение на f₁ за медна тръба във функция от деб. на тръбата и температурата на флуида за (t= 15, 40, 60 и 80 °C) при дължина ℓ=3 m

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, Volume 55, book 1.2. НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2016, Том 55, серия 1.2

Получени регресионни модели

Изведените регресионни модели от II степен са от вида:									
$Y_1 = b_0 + b_{1,0} \cdot x_1 + b_{2,0} \cdot x_2 + b_{3,0} \cdot x_3 + b_{4,0} \cdot x_4 + b_{5,0} \cdot x_5 + b_{6,0} \cdot x_6 + b_{7,0} \cdot x_6 + b_{8,0} \cdot x_6 + b_{1,2} \cdot x_1 \cdot x_2 + b_{1,3} \cdot x_1 \cdot x_3 + b_{1,4} \cdot x_1 \cdot x_4 + b_{1,0} \cdot x_1 $									
$b_{1,5}.x_1.x_5 + b_{1,6}.x_1.x_6 + b_{1,7}.x_1.$	x ₇ + b _{1,8} .x	$1.x_8 + b_{2,3}.x_2.x_3 + b_{2,4}$	$x_2 x_4 + b_{2,5} x_2 x_5 + b_{2,6}$	$x_2 x_6 + b_{2,7} x_2 x_7 +$					
$b_{2,8} x_{8} x_{6} + b_{3,4} x_{3} x_{4} + b_{3,5} x_{3} x_{5} + b_{3,6} x_{3} x_{6} + b_{3,7} x_{3} x_{7} + b_{3,8} x_{3} x_{8} + b_{4,5} x_{4} x_{5} + b_{4,6} x_{4} x_{6} + b_{4,7} x_{4} x_{7} + b_{4,7} $									
$b_{4,8}x_4x_8 + b_{5,6}x_5x_6 + b_{5,7}x_5x_7 + b_{5,8}x_5x_8 + b_{6,7}x_6x_7 + b_{6,8}x_6x_8 + b_{7,8}x_7x_8 + b_{1,1}x_1^2 + b_{2,2}x_2^2 + b_{3,3}x_3^2 + b_{5,6}x_5x_8 + b_{5,6}x_8 + b_{5,$									
$b_{4.4} x_4^2 + b_{5.5} x_5^2 + b_{6.6} x_6^2 + b_{7.7} x_7^2 + b_{8.8} x_8^2$									
Независима	Коеф.	$Y_1=f_1$	$Y_2 = f_2$	$Y_3 = f_3$					
променлива Хі.Хі	-	Hz	Hz	Hz					
Своболен член	b	3 6758414E+02	8 8664502E+02	2 0013986E+03					
	0 _{0,0}	1 1012266E+0/	2 985/131E+0/	5.0016/88E+0/					
$\frac{X_1 - (O_{TD.}, \Pi)}{X_2 = (l m)}$	D _{1,0}	_6 7150110E+01	_1 8160918E+02	-3 6332800E+02					
$\chi_2^{-}(1, 11)$	D _{2,0}	0.0211466E 01	-1.0100910L102	5.000000000000000000000000000000000000					
X ₃ -(E _{Tp.} , GFa)	D _{3,0}	9.0311400E-01	2.40001000000	0.0142704E±00					
$X_4 = (\mu_{TP.}, -)$	D _{4,0}	-4.3405280E+02	-1.0111245E+03	-2.4425312E+03					
$x_5 = (\rho_{Tp.}, kg/m^3)$	D _{5,0}	-5.8429155E-02	-1.4086804E-01	-3.1958869E-01					
х ₆ = (В _{фл.} , kg/m [°])	b _{6,0}	-2.6429150E+02	-6.3034247E+02	-1.4466521E+03					
x ₇ =(ρ _{фл.} , kg/m³)	b _{7,0}	-3.5891819E-01	-8.6800867E-01	-1.9539149E+00					
x ₈ =(t, °C)	b _{8,0}	-6.2971435E+00	-1.4883490E+01	-3.4618336E+01					
x ₁ .x ₂ =(δ _{τp.} , m).(ℓ, m)	b _{1,2}	-2.0623525E+03	-5.6597988E+03	-1.1028130E+04					
x ₁ .x ₃ =(δ _{τρ.} , m). (Ε _{τρ.} , GPa)	b _{1,3}	5.4661322E+00	1.4571319E+01	3.0127192E+01					
x ₁ .x ₄ =(δ _{τp.} , m). (μ _{τp.} , -)	b _{1,4}	-4.5178909E+02	-2.1164951E+03	-1.4635627E+03					
$x_1.x_5 = (\delta_{TD,}, m). (\rho_{TD,}, kg/m^3)$	b _{1.5}	-2.4539962E-01	-6.6825610E-01	-1.3326088E+00					
$x_1.x_6 = (\delta_{TD}, m). (B_{dr}, kg/m^3)$	b ₁₆	-3.2243640E+02	-8.9084528E+02	-1.8116265E+03					
$x_{1}.x_{7}=(\delta_{TD}, m).(\rho_{DD}, kg/m^{3})$	b ₁₇	-9.0803945E-01	-2.4370387E+00	-5.7318292E+00					
$x_{1,x_{8}} = (\delta_{r_{0}}, m), (t, °C)$	b _{1.8}	-8.3508177E+00	-2.2520908E+01	-5.2411453E+01					
$x_{2},x_{3}=(\ell,m),(E_{TD},GPa)$	h _{2.2}	-3.9218321E-02	-1.1079212E-01	-2.1104440E-01					
$x_0 x_4 = (l m) (u_{12} - 1)$	h _{0.4}	1.3290717E+01	3.1526754E+01	7.1156342E+01					
$x_{2}x_{5} = (l m) (0 - kg/m^{3})$	b _{0.5}	7.6124800E-04	2.1040170E-03	4.1023381E-03					
$x_2 x_5 = (l, m) (B_{+-}, kg/m^3)$	h _{2,5}	1 4480031E+00	3 6327934E+00	8 0172100E+00					
$x_2 x_6 (l, m) (c_1 k_0/m^3)$	b _{2,6}	4.0635858E-03	9.9683953E-03	2 2784676E-02					
$x_2 \cdot x_7 = (l, m) \cdot (p_{\phi n.}, Rg/m)$	0 _{2,7}	3.4487691E-02	8 1989534E-02	1 9368389E-01					
$\chi_{2} = (1, 11) \cdot (1, 12)$	0 _{2,8}	2 3020146E±00	5.6100266E±00	1.0000000E-01					
$X_3.X_4 - (E_{Tp.}, GFa).(\mu_{Tp.}, -)$	0 _{3,4}		3 8445785E 04	8 5287480E 04					
$X_3.X_5 = (E_{TD}, GPa).(\rho_{TD}, Kg/III)$	D _{3,5}	2 0762919E 02	-5.0445705L-04	-0.3207409L-04					
$X_3.X_6 - (E_{Tp.}, GFa). (B_{\phi \pi.}, Kg/III)$	D _{3,6}	2.0702010E-02	4.9090209E-02	1.2337730E-01					
$X_{3}.X_{7}=(E_{Tp.}, GPa).(\rho_{\phi\pi.}, Kg/m^{2})$	D _{3,7}	2.9794960E-00	5.9550965E-05	1.9270973E-04					
$X_{3}.X_{8} = (E_{TP.}, GPa). (t, -C)$	D _{3,8}	1.0649969E-03	2.4166813E-03	6.1399867E-03					
$x_{4}.x_{5}=(\mu_{Tp.}, -).(\rho_{Tp.}, kg/m^{\circ})$	D _{4,5}	1.6804151E-01	4.1118148E-01	9.1/63997E-01					
x ₄ .x ₆ =(µ _{тр.} , -).(В _{фл.} , kg/m [°])	b _{4,6}	7.0359322E+01	1./452531E+02	4.0444037E+02					
x ₄ .x ₇ =(μ _{тр.} , -).(ρ _{фл.} , kg/m³)	b _{4,7}	1.9585283E-01	4.6613526E-01	1.1290606E+00					
x ₄ .x ₈ =(μ _{τp.} , -).(t , ° C)	b _{4,8}	1.4113694E+00	3.2530491E+00	8.3415422E+00					
x ₅ .x ₆ =(ρ _{тр.} , kg/m ³).(B _{фл.} , kg/m ³)	b _{5,6}	-2.2930074E-04	-7.3357834E-04	-1.4284375E-03					
x ₅ .x ₇ =(ρ _{тр.} , kg/m ³).(ρ _{фл.} , kg/m ³)	b _{5,7}	-3.9137934E-08	-6.5392669E-07	-7.3235054E-07					
x ₅ .x ₈ =(ρ _{τp.} , kg/m ³).(t , ° C)	b _{5,8}	-1.0330190E-05	-3.0411795E-05	-6.1989027E-05					
x ₆ .x ₇ =(B _{φл.} , kg/m ³).(ρ _{φл.} , kg/m ³)	b _{6,7}	2.3784976E-01	5.8782208E-01	1.3038839E+00					
x ₆ .x ₈ =(B _{фл.} , kg/m ³).(t , ° C)	b _{6,8}	2.3216178E+00	5.4619908E+00	1.2741265E+01					
x ₇ .x ₈ =(ρ _{фл.} , kg/m ³).(t , ° C)	b _{7,8}	-2.5238162E-03	-5.9650079E-03	-1.4065840E-02					
x ₁ .x ₁ =(δ _{τρ.} , m). (δ _{τρ.} , m)	b _{1,1}	-3.6506916E+05	-8.4332825E+05	-1.9564465E+06					
$x_2.x_2=(\ell, m).(\ell, m)$	b _{2.2}	1.0070912E+01	2.7902239E+01	5.4266003E+01					
x ₃ .x ₃ =(Е _{тр.} , GPa).(Е _{тр.} , GPa)	b _{3.3}	3.9975015E-03	9.6941413E-03	2.1767005E-02					
$X_4.X_4 = (\mu_{TD}, -).(\mu_{TD}, -)$	b4 4	-5.8615198E+02	-1.5227692E+03	-3.2324001E+03					
$x_{5}x_{5}=(\rho_{TD}, kg/m^{3}), (\rho_{TD}, kg/m^{3})$	b _{5.5}	1.4547662E-06	3.4196316E-06	8.0490045E-06					
$x_6.x_6 = (B_{dm}, kq/m^3). (B_{dm}, kq/m^3)$	bee	-1.1612260E+01	-3.1371042E+01	-6.6243759E+01					
$x_7, x_7 = (\rho_{m_1}, k_0/m^3), (\rho_{m_2}, k_0/m^3)$	b7 7	4.0656290E-04	9.7258319E-04	2.2282195E-03					
	- 1,1		1	1 1					

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, Volume 55, book 1.2. НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2016, Том 55, серия 1.2

x ₈ .x ₈ =(t, °C). (t, °C)	b _{8,8}	6.7870989E-02	1.6388552E-01	3.7357292E-01			
Ср. проц. грешка	%	4,97	5,14	4,96			
R	-	0.99561	0.99474	0.99559			
F> F _{таб.}	-	707.849>1,45	589.565>1,45	704.177>1,45			
Забележка: Моделите са	изведен	ни при степени н	а свобода v ₁ =44,	v ₂ =275 и ниво на			
значимост α=0,05. (R) е значим при F > F _{тв} .							

Литература

- [1] Орманджиев К., Х. Лазаров, М. Райкова, Н. Стефанов, Моделиране на динамичните процеси в следяща електрохидравлична система при промяна температурата на работния флуид, НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ 2013, том 52, серия 1.2, Русе, 2013, стр. 97 101.
- [2] Орманджиев К., М. Петров, Х. Лазаров, Влияние на температурата на работния флуид върху собствената честота на електрохидравлична следяща система, НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ, том 54, серия 1.2, Русе, 2015, стр. 253-258.
- [3] AL-Assady A., A. Hassan, M. Talib, J. AL-Khafaji, Design and Analysis of Electro-Hydraulic Servo System for Speed Control of Hydraulic Motor, Journal of Engineering, Number 5, Volume 19, May 2013, Baghdad.
- [4] Basmenj A., A. Sakhavati, Jafarghafuri, PID Controller Design Forposition Control of Electrohydraulic Actuators Using Imperialist Competitive Algorithm, Indian J. Sci. Res., 1(1), 2014, pp. 775-779.
- [5] Gold P., A. Schmidt, H. Dicke, J.Loos, C.Assmann, Viscosity-Pressure-Temperature Behaviour of Mineral and Synthetic Oils, Journal of Synthetic Lubrication, 18-1 (2001), 51-79.
- [6] Hassan J., Saif Yousif Ibrahim, An Experimental Study Into The Effect Of Temperature And Pressure on The Hydraulic System, Eng. & Tech. Jurnal, Vol.27, No.14, Mechanical Engineering Department, University of Technology – Baghdad, 2009.
- [7] Jovanovic M., Nonlinear Control of an Electrohydraulic Velocity Servosystem, Proceedings of the American Control Conference Anchorage, AK May 8-10, 2012.
- [8] Knezevic D., V. Savic, Mathematical Modeling of Changing of Dynamic Viscosity, as a Function of Temperature and Pressure, of Mineral Oils for Hydraulic Systems, FACTA UNIVERSITATIS, Series: Mechanical Engineering Vol. 4, No 1, 2006, pp. 27 – 34.
- [9] Ormandzhiev K., Transient Processes in Electro-Hydraulic Follow-up System with Long Pressure Pipelines, 30th SEM HIPNEF 2006, May 24 - 26, Vrnjacka Banja, 2006, pp. 123 – 130.
- [10] Shafiabadi M., M. Jahanshahi, A. Bidaki, Feedback Error Learning using Laguerrebased Controller to Control the Velocity of an Electro Hydraulic Servo System, Australian Journal of Basic and Applied Sciences, 6(10), 2012, pp. 222-230.
- [11] Xu M., B. Jin, G. Chen, J. Ni, Speed-Control of Energy Regulation Based Varible-Speed Electrohydraulic Drive, Strojniski vestnik – Journal of Mechanical Enginneering 59(2013)7-8, pp. 433-442.
- [12] Cosmos/M Finite Element Analysis System User Guide (Vol. 1), SRAC, 1994.
- [13] Cosmos/M The Basic System, SRAC, 1994.
- [14] Cosmos/M Advanced Modules, SRAC, 1994.

За контакти:

Доц. д-р инж. М. Петров, Катедра "Техническа механика", ТУ-Габрово, тел.: 362, e-mail: MPetrov@tugab.bg

Докладът е рецензиран.