
НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 53 -

Object Space Based Collision Detection

for Cloth Simulation on the GPU

Tzvetomir Vassilev, Vladimir Dochev

Object Space Based Collision Detection for Cloth Simulation on the GPU: This paper presents an

approach for cloth-body collision detection in computer graphics simulations of clothing. It is an object-space

based algorithm implemented in OpenCL on the GPU. The underlying idea behind this work is to speed up

the solution of the collision detection problem by utilizing the excessive computational capacity of

contemporary GPUs. Results of the experiment are presented at the end of the paper.

Key words: Collision Detection, Object Space, GPU, Cloth Simulation

INTRODUCTION

The main objective of this work is to develop an efficient approach for collision

detection (CD) in computer graphics simulations of clothing. Collision detection is the most

time consuming stage in realistic cloth simulations. It is so due to a number of factors as:

complexity of the CD problem; the deformable nature of cloth; cloth objects are usually

situated near or on the same surface of other objects in the scene which results in multiple

collisions in dynamic scenarios; achieving realism requires highly detailed object surfaces.

Over the past few years the continual progression of graphics processing unit (GPU)

technology made these devices attractive for more than just rendering. The today’s

modern GPUs are very powerful computationally, capable of parallel processing. They

outperform the modern central processing units (CPUs) in floating-point calculations. In

addition GPUs have become more accessible programmwise which made them popular

for speeding up all kinds of computational tasks.

The underlying idea behind the presented approach is to assist the CPU in solving

the CD problem by utilizing the excessive computational GPU capacity. This will reduce

the workload on the CPU and is expected to improve the simulation speed in general.

The rest of the paper is organized as follows. The next section reviews previous work

on CD on GPUs. Section 3 describes the utilized cloth model and gives basic idea about

the way a simulation is carried out. Section 4 presents the object space technique for CD

on the GPU. Section 5 gives results of the experiment and Section 6 concludes the paper

and gives ideas about future work.

PREVIOUS WORK ON COLLISION DETECTION ON GPUs

Due to the computational complexity of the CD task and its impact on the overall

simulation speed in various computer graphics applications, significant research has been

done on the topic by the Computer Graphics community. This resulted in wide variety of

approaches and solutions. Initially, most of them ran on the CPU only. Later approaches

involved the GPU implicitly (without direct GPU programming). In recent approaches it is

common for the GPU to explicitly take part in or entirely solve the CD problem. Due to

GPU’s stream processing oriented architecture implementing an entire CD algorithm to run

on the GPU only may not be always feasible. Thus, hybrid approaches that involve both

the CPU and GPU in the CD process are quite common.

The techniques for CD could be divided in two major groups – based on geometrical

interference tests in object-space and based on z-buffer interference tests in image-space.

A common feature of the object-space approaches is the utilization of hierarchical

structure(s) for reducing the complexity of the problem. There are two main strategies for

building such hierarchies. The one is focused at space or voxel subdivision while the other

is focused at the objects in the scene and relies on different types of bounding volumes

and in particular bounding boxes.

In 2003 Knot et al [6] presented CInDeR – an image-space algorithm for CD on the

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 54 -

GPU. The GPU is used implicitly via hardware frame buffer operations which implement

virtual ray-casting in order to detect static interference between solid objects. Kim et al [5]

proposed hybrid parallel continuous CD method that takes advantage of hybrid multi-core

architectures – using the general-purpose CPUs to perform bounding volume hierarchy

(BVH) traversal and culling while GPUs are used to perform the actual tests for collisions

which are reduced to solving cubic equations. Another hybrid approach is presented in the

work of Georgii et al [1,2]. On the contrary of the work of Kim et al the GPU here is used to

locate couples of possibly colliding polygons via ray tracing and depth peeling techniques.

Afterwards, the actual tests for exact interaction are performed on the CPU. A hybrid

object-space CD algorithm which mainly uses the GPU is developed by Zhang and Kim

[10]. It is suitable for deformable polygonal objects. Given two objects the algorithm can

detects all possible pairwise primitive-level intersections between them using two

hierarchies of axis aligned bounding boxes (AABBs). The two balanced AABB trees are

used as input streams over which the GPU performs tests for overlapping. An encoding /

decoding strategy is also used to transfer only the list with possible collisions instead of the

entire output streams which saves GPU – CPU communication bandwidth. Finally the tests

for intersection between primitive-level elements (e.g. triangles) are implemented using the

CPU. This approach is not capable of detecting self-collisions. Pabst et al [7] propose

another hybrid CPU/GPU CD technique for rigid and deformable objects based on spatial

subdivision. The algorithm is developed with scalability in mind on both the CPU and GPU

sides and implements highly parallel spatial subdivision method to quickly prune away non

colliding parts of the scene in a broad phase. Then a narrow phase with GPU-optimized

exact collision tests follows. The CPU is used for BVH updates. A pure GPU based CD

approach for rigid bodies is presented by Gress et al [3]. It operates in object-space and

utilizes balanced AABB trees as BVH. The algorithm maps the AABB trees onto GPUs and

performs a breadth-first search on the trees. During the traversal of hierarchy, occlusion

query is used to count the number of overlapping AABB pairs and recursive AABB

overlapping tests in object space is implemented using GPUs. In a later research the

algorithm is modified and implemented for deformable parameterized surfaces [4]. The

modifications include real-time generation of BVH on the GPU via stenciled geometry

images representing the individual parameterized surfaces.

CLOTH MODEL

The elastic model of cloth, used in this work, is a mesh of l×n mass points, each of

them being linked to its neighbours by massless springs of natural length greater than

zero.

Bend

Shear Stretch

Fig. 1. Spring types in the cloth model

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 55 -

There are three different types of spring (Fig. 1):

• Springs linking vertices [i, j] with [i+1, j], and [i, j] with [i, j+1] are called “stretch”

springs;

• Springs linking vertices [i, j] with [i+1, j+1], and [i+1, j] with [i, j+1] are called

“shear” springs;

• Springs linking vertices [i, j] with [i+2, j], and [i, j] with [i, j+2] are called “bend”

springs.

As the names indicate, the first type of spring implements resistance to stretching,

the second – to shearing and the third – to bending.

Let pij(t), vij(t), aij(t), where i=1,…,l and j=1,…,n, be respectively the positions,

velocities, and accelerations of the mass points at time t. The system is governed by the

basic Newton’s law:

fij = mij aij, (1)

where mij is the mass of point ij and fij is the sum of all forces applied at point ij. The force

fij can be divided in two categories.

Internal forces arise from the tensions of the springs. The overall internal force

applied at the point ij is a result of the stiffness of all springs linking this point to its

neighbours:

∑
⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−

−

−−−=

lk
ijkl

ijkl

ijklijklijklijint
lk

,

0

)()(

pp

pp

pppf
, (2)

where kijkl is the stiffness of the spring linking ij and kl, and
0

ijkl
l is the natural length of the

same spring.

The external forces can differ in nature depending on what type of simulation we

wish to make. The forces most frequently included are:

• Gravity:
gr

ij
f = mg, where g is the gravity acceleration;

• Viscous damping:
vd

ij
f = –Cvd(vi-vj), where Cvd is a damping coefficient,

• Collision response.

From the above we may compute the force fij(t) applied to point ij at any time t. The

fundamental equations of Newtonian dynamics can be integrated over time by a simple

Euler method:

)()()(

)()()(

)(

1

)(

tttttt

tttttt

t

m

tt

ijijij

ijijij

ij

ij

ij

Δ+Δ+=Δ+

Δ+Δ+=Δ+

=Δ+

vpp

avv

fa

, (3)

where Δt is a chosen time step. The Euler Equations 3 are known to be very fast and to

give good results, provided the time step Δt is less than the natural period of the system

KmT π≈
0

, where K is the highest stiffness in the system. Numerous recent works in cloth

simulation have shown that improvements in stability are possible by using implicit

integration. However, for complex garments with mapping of Kawabata Evaluation System

measurements to the spring properties, explicit integration still proved to be beneficial in

terms of efficiency in our case [8]. The advantages of Euler integration became particularly

apparent when computation of the collision detection and response, which require small

time steps, were taken into consideration.

The implementation of this cloth model on the GPU is described in details in [9]. The

collision detection and response is image-space based and is also implemented on the

GPU. In this work we use a similar implementation but it is based on OpenCL. However, if

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 56 -

8.0>•

−

−

n

opcp

opcp

we want to animate a dressed body the image-based approach is not suitable, because of

the arms moving in front and back of the body and in this way the body depth map is

shadowed. This approach either has to be modified or a pure object space approach has

to be developed.

OBJECT SPACE CD ON THE GPU

In this work we apply an object space collision detection algorithm implemented in

OpenCL on the GPU. It is a brute force approach and checks for collisions between each

cloth vertex and a face on the object. As on the GPU checks are performed in parallel, so

the technique shows a relatively good speed on modern GPUs.

For this purpose we build an axis aligned bounding boxes (AABB) for each face of

the objects colliding with the cloth. This requires two memory buffers; one for the (minx,

miny, minz) and a second one for (maxx, maxy, maxz). Another buffer keeps the normal

vectors of each face. The OpenCL kernel is executed for a rectangular grid of a size

number_of_cloth_vertices x number_of_object_faces. It checks if the cloth vertex is inside

the AABB and if so, it refines the check by computing the dot product of the face normal

vector (n) and the vector from the cloth vertex (cp) to the object face vertex (op), i.e.:

(4)

If there is a collision the kernel writes to a collision buffer; XYZ components

correspond to the face normal vector and W is one. Before the CD this buffer is cleared.

The cloth simulation kernel checks the corresponding value of the collision buffer. If W=1

this means that there is a collision and the normal vector is used to apply an appropriate

collision response. In OpenCL the programmer has control over the way parallelization is

performed on the GPU. So the kernel is called with such values for the number of global

and local threads, so that it is not possible to write to one and the same element of the

collision buffer.

RESULTS

The algorithms were implemented in C++ under both Windows XP and Ubuntu Linux

and were tested on a machine with a 2.8 GHz AMD processor, 4 GB RAM and NVidia

GeForce GTX 260 graphics card. OpenCL was used to implement the parallel computation

on the GPU. OpenGL and GLUT were utilized for rendering the images. The tests were

performed for a table cloth draping on a sphere as shown in Fig. 2.

Fig. 2. Table cloth draping on a sphere

Times were measure for 2000 iteration steps. Fig. 3 compares three different

implementations: pure CPU, GPU with object-space (OS) collision detection as described

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 57 -

in this paper and 576 faces on the sphere, GPU with image-space (IS) CD. As the results

show the second approach is much faster than a pure CPU implementation and its

performance is comparable with the IS CD.

Fig. 4 depicts how the speed of OS CD changes depending on the number of faces

on the object. The simulation time increases almost linearly and up to 400-500 faces it is

comparable with the IS CD. Moreover, if the number of faces is below 150, the OS CD

performs better than the IS CD.

Fig. 3. Comparison of 3 implementations

Fig. 4. Performance vs the number of faces on the object

CONCLUSIONS AND FUTURE WORK

This paper presented an approach for object-space collision detection and response

in cloth simulation, implemented on GPU. Its main advantage over the image-space based

collision detection is that it can be applied for a dynamic simulation of garments on walking

avatars. The following conclusions can be drawn:

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 58 -

• The OS CD for cloth simulation, described in this paper, can be used in real

applications if the number of faces on the objects is not greater than 500-600;

• The OS CD shows better performance than IS CD for number of faces less than

150.

In order to speed up the current approach for greater number of faces we can

implement a hierarchical approach, which reduces the number of checks. This will be

explored in our future work.

This paper is partially financed by project: Creative Development Support of

Doctoral Students, Post-Doctoral and Young Researches in the Field of Computer

Science, BG 051PO001-3.3.04/13, EUROPEAN SOCIAL FUND 2007–2013,

OPERATIONAL PROGRAMME “HUMAN RESOURCES DEVELOPMENT”

REFERENCES

[1] Georgii, J., J. Krüger, R. Westermann. Interactive Collision Detection for

Deformable and GPU Objects. IADIS International Journal on Computer Science and

Information Systems, October 2007, Vol. 2, Number 2.

[2] Georgii, J., J. Krüger, R. Westermann. Interactive GPU-based Collision Detection.

IADIS Computer Graphics and Visualization, 2007.

[3] Gress, A., G. Zachmann. Object-space Interference Detection on Programmable

Graphics Hardware. SIAM Conference on Geometric Design and Computing, Seattle,

Washington, November 13-17 2003.

[4] Gress, A., M. Guthe, Reinhard Klein. GPU-based Collision Detection for

Deformable Parameterized Surfaces. Computer Graphics Forum, September 2006, 25:3

(497-506), Presented at Eurographics 2006.

[5] Kim, D., J.P. Heo, J. Huh, J. Kim, S. Yoon . HPCCD: Hybrid Parallel Continuous

Collision Detection using CPUs and GPUs. Computer Graphics Forum (Pacific Graphics)

2009.

[6] Knott, D., D. K. Pai. CInDeR - Collision and Interference Detection in Real-time

using Graphics Hardware. Proceedings of Graphics Interface 2003, p 73-80. Halifax, Nova

Scotia, 11-13 June 2003.

[7] Pabst, S., A. Koch, W. Strasser. Fast and Scalable CPU/GPU Collision Detection

for Rigid and Deformable Surfaces. Eurographics Symposium on Geometry Processing

2010, Volume 29, Number 5.

[8] Vassilev, T., Spanlang, B., Chrysanthou Y. Fast Cloth Animation on Walking

Avatars, Computer Graphics Forum, 2001, 3 (20), 260-267.

[9] Vassilev, T.I, Rousev, R.I., Algorithm and Data Structures for Implementing a

Mass-spring Deformable Model on GPU, Proceedings of the RU conference, November,

2008, Ruse, Bulgaria.

[10] Zhang, X., Y. J. Kim. Interactive Collision Detection for Deformable Models Using

Streaming AABBs. IEEE Transactions on Visualization and Computer Graphics Archive,

March 2007, Volume 13 , Issue 2, p 318-329, ISSN:1077-2626.

About the autors:

Dr. Tzvetomir Ivanov Vassilev, Department of Informatics, University of Ruse,

Phone: +359 82 888475, Е-mail: TVassilev@uni-ruse.bg.

Vladimir Stoyanov Dochev, Department of Computing, University of Ruse, Phone:

+359 82 888 276, Е-mail: VDochev@ecs.uni-ruse.bg.

Докладът е рецензиран.

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 59 -

РУСЕНСКИ УНИВЕРСИТЕТ „АНГЕЛ КЪНЧЕВ”

UNIVERSITY OF RUSE „ANGEL KANCHEV“

Д И П Л О М А

Програмният комитет на

Научната конференция РУ&СУ’10

награждава с КРИСТАЛЕН ПРИЗ

“THE BEST PAPER”

Доц. ЦВЕТОМИР ВАСИЛЕВ И

ВЛАДИМИР ДОЧЕВ

автори на доклада

“Object Space Based Collision Detection

for Cloth Simulation on the GPU”

D I P L O M A

The Programme Committee of

the Scientific Conference RU&SU'10

Awards the Crystal Prize

"THE BEST PAPER"

to TZVETOMIR VASSILEV AND

VLADIMIR DOCHEV

authors of the paper

“Object Space Based Collision Detection

for Cloth Simulation on the GPU”

РЕКТОР доц. д-р Христо Белоев

RECTOR Prof. D-r Hristo Beloev

01.11.2010

