
НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2010, том 49, серия 6.1 
 

 - 66 - 

 

Finite State Automata Semantics in Communicating Sequential 

Processes 

 

Vladimir Dimitrov 

 

Finite State Automata Semantics in Communicating Sequential Processes: Traditionally, 

distributed systems and protocols are described with finite state automata. Later on, other more powerful 

mathematical tools for specification and analyses of distributed systems have been developed, such as Petri 

nets, CSP etc. Modern tools and notations for specification, development and implementation of distributed 

systems are based on them. In commercial tools, that use finite state automata, as a base for business 

process specification, the problem is the need to convert older specifications into new one without losing the 

semantics. Newly developed tools are based on Petri nets or CSP. They are more powerful in specification 

and analyses, but they have to support continuity. Intention of this paper is formally to specify finite state 

automata in CSP. Finite state automata semantics is clear, but there are needs for conversion of business 

processes specified in them to new form without losing the semantics. 

Key words: Finite State Automata, Communicating Sequential Processes, Semantics. 

 

MOTIVATION 

Traditionally, distributed systems and protocols are described with finite state 

automata (finite state machines). As result of that, many tools based on finite state 

automata have been developed and used. Such an example is business state machines 

used in IBM WebSphere Integration Developer [1]. Later on, other more powerful 

mathematical tools for specification and analyses of distributed systems have been 

developed, such as Petri nets [2], CSP [3], and so on. Modern tools and notations for 

specification, development and implementation of distributed systems are based on them. 

For example, Petri nets concepts are broadly used for specification of business processes 

in notations like UML (activity diagrams) [4], WS-BPEL [5], BPMN [6], etc. The newer 

mathematical tools are more powerful that the older ones. For example, Petri nets have 

more expressive power than finite state automata, but are less expressive than CSP. Our 

intention, here in this paper, is not to compare them. In commercial tools, that use finite 

state automata, as a base for business process specification, the problem is the need to 

convert older specifications into new one without losing the semantics. Newly developed 

tools are usually based on Petri nets or CSP. They are more powerful in specification and 

analyses, but they have to support continuity with the older developments. Such an 

example is IBM WebSphere Integration Developer that nowadays is based on WS-BPEL, 

but has to support backward compatibility with the business state machines. Intention of 

this paper is formally to specify finite state automata in CSP. Finite state automata 

semantics is clear, but there are needs for conversion of business processes specified in 

them to new form without losing the semantics. 

 

DEFINITIONS 

There are many kinds of finite state automata: deterministic, non-deterministic, Mealy 

machines, Moor machines etc. Some extensions like Turing machine get outside the 

expressive power of finite state automata, but they are not subject of this paper. We will 

use the next definition of finite state automata: Finite state automata A with alphabet V is 

the 5-tuple A= <K, V, δ, q0, F>, where: K is non empty finite set of automata states; V is 

non empty finite set of input symbols - the alphabet; δ is transition function with domain K x 

V and range K; q0 ∈ K is the initial state; F � K is the set of final states. It is possible F to 

be empty, in this case the machine is executed forever or to stop not in final state. When 

automata stop in finite state it has finished normally its work, but if it stops in non final state 

– this means that machine is broken in some way. A finite state automata is deterministic if 

its transition function is defined in every state for all input symbols, i.e. domain δ is equal to 

K x V. If the finite state automata has at least one state for which the transition function is 



НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2010, том 49, серия 6.1 
 

 - 67 - 

not defined for all input symbols, then this automata is non deterministic. From the theory, 

we know that every non deterministic machine can be modeled deterministic one. This 

means that they are equivalent in expressiveness. In some definitions of finite state 

automata output alphabet O and output function ω are included. When a transition is 

executed, it is possible to be generated some output. Domain of ω is subset of the domain 

of δ, but its range is O. 

Some examples follow. First example: There are no final states (F =�). This machine 

is non-deterministic with: K = {q0, patients, fields, setup, ready, beam_on}; V = 

{select_patient, select_field, enter, ok, start, stop, intlk}; δ = {(q0, enter) � fields, (patients, 

enter) � fields, (fields, select_patient) � patients, (fields, enter) � setup, (setup, 

select_patient) � patients, (setup, select_field) � fields, (setup, ok) � ready, (ready, 

select_patient) � patients, (ready, select_field) � fields, (ready, start) � beam_on, (ready, 

intlk) � setup, (beam_on, stop) � ready, (beam_on, intlk) � setup} 

In the second example, the machine has output: K = {q0, P0, P1}; V = {init, 00, 01, 

10, 11}; δ = {(q0, init) � P0, (P0, 00) � P0, (P0, 01) � P0, (P0, 10) � P0, (P0, 11) � P1, 

(P1, 00) � P0, (P1, 01) � P1, (P1, 10) � P1, (P1, 11) � P1} O = {NULL, 0, 1}; ω = {(q0, 

init) � NULL, (P0, 00) � 0, (P0, 01) � 1, (P0, 10) � 1, (P0, 11) � 0, (P1, 00) � 1, (P1, 

01) � 0, (P1, 10) � 0, (P1, 11) � 1} 

 

SPECIFICATION IN Z-NOTATION 

Here, we will be more strict specifying finite state automata in Z-notation [7]. Basic 

sets are: 

[STATES, INPUTS, OUTPUTS] 

where STATES is non empty final sets of automata states, INPUTS is the set of input 

symbols (events), OUTPUTS is the set of all output symbols. 

q0: STATES; NULL: OUTPUTS; FINALS: � STATES 

 

STATES ≠ � � (�n: � � #STATES � n) � INPUTS ≠ � � q0 	 FINALS 

where q0 is the initial state, NULL is a special output symbol – nothing is outputted, 

FINALS is possible empty subset of STATES – final states. 

 FSM  

transition: STATES × INPUTS 
 STATES; output: STATES × INPUTS 
 OUTPUTS 

current: STATES 

 

dom output = dom transition � q0 � dom (dom transition) � FINALS � dom (dom transition) = � � 

FINALS 
 ran transition � STATES � {q0} = ran transition � 

STATES � FINALS = dom (dom transition) 

 

Finite states machine consists of transition function, output function and current state. 

Transition and output functions have the same domain Cartesian product of STATES and 

INPUTS. The initial state q0 is part of the domain of transition function. FINALS states 

have only input arcs, but no output arcs. Only q0 has no input arcs. All states, except final 

ones, have to have input and output arcs. 

 FSMInit  

FSM 

 

current = q0 

 

Finite states automate initially starts with current state q0. 
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 Execute  

ΔFSM; i?: INPUTS; o!: OUTPUTS 

 

(current, i?) � dom transition � current′ = transition(current, i?) � o! = output(current, i?) � 

transition′ = transition � output′ = output 

 

Execution of finite state automata consists of application of functions transition and 

output to the input and the current state. Current state is modified in successful transition. 

Here is not defined what the automata will do is an unexpected input in this state is 

accepted. There are to possible actions: the first one is not to react and the state to remain 

the same; the second is to indicate an error. What approach will be used depend of 

automata nature. If the machine is grammar recognition it must react with error. If the 

automata is not of that that type it is possible simply to ignore the input and to remain in 

the same state. In any case, it is possible the automata to be represented with 

deterministic one and then transition function will be total and no such a problem will arise.  

Finally, we will do some comments about finite state automata and business 

processes. There are two kinds of processes: such that are executed one time and finish 

and such that are started and then execute endless. In any case, they have to be 

initialized in some way that is why initial state is obligatory. But in the first case final states 

are obligatory. The business process cannot stop in another state (except in final states) – 

this is design error and has to be checked. Now, let’s see examples. The first example: 

STATES ::=q0 | patients | fields | setup | ready | beam_on 

INPUTS ::= select_patient | select_field | enter | ok | start | stop | intlk 

 

 

FINALS: � STATES 

 

STATES ≠ � � (�n: � � #STATES � n) � INPUTS ≠ � � q0 	 FINALS � FINALS = � 

 

 FSM  

transition: STATES × INPUTS 
 STATES; current: STATES 

 

transition = {(q0, enter) � fields, (patients, enter) � fields, (fields, select_patient) � patients, 

 (fields, enter) � setup, (setup, select_patient) � patients, (setup, select_field) � fields, 

 (setup, ok) � ready,  (ready, select_patient) � patients, (ready, select_field) � fields,  

 (ready, intlk) � setup, (ready, start) � beam_on, (beam_on, stop) � ready,  

 (beam_on, intlk) � setup } � 

q0 � dom (dom transition) � FINALS � dom (dom transition) = � � FINALS 
 ran transition � 

STATES � {q0} = ran transition � STATES � FINALS = dom (dom transition) 

 

 FSMInit  

FSM 

 

current = q0 

 

 Execute  

ΔFSM; i?: INPUTS 

 

(current, i?) � dom transition � current′ = transition(current, i?) � transition′ = transition 

 

OUTPUTS and output function are eliminated in this specification, but STATES, 

INPUTS and transition are in full details. No output parameter during execution. 

The second example is: 
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STATES ::= q0 | P0 | P1 

INPUTS ::= init | i00 | i01 | i10 | i11 

OUTPUTS ::= NULL | o0 | o1 

 

 

FINALS: � STATES 

 

STATES ≠ � � (�n: � � #STATES � n) � INPUTS ≠ � � q0 	 FINALS � FINALS = � 

 

 FSM  

transition: STATES × INPUTS 
 STATES; output: STATES × INPUTS 
 OUTPUTS 

current: STATES 

 

transition = {(q0, init) � P0,  (P0, i00) � P0, (P0, i01) � P0, (P0, i10) � P0,  

 (P0, i11) � P1, (P1, i00) � P0, (P1, i01) � P1, (P1, i10) � P1, (P1, i11) � P1} � 

output = {(q0, init) � NULL,  (P0, i00) � o0, (P0, i01) � o1, (P0, i10) � o1, (P0, i11) � o1, 

 (P1, i00) � o1, (P1, i01) � o0, (P1, i10) � o0, (P1, i11) � o1} � 

dom output = dom transition � q0 � dom (dom transition) � FINALS � dom (dom transition) = � � 

FINALS 
 ran transition � STATES � {q0} = ran transition �  

STATES � FINALS = dom (dom transition) 

 

 FSMInit  

FSM 

 

current = q0 

 

 Execute  

ΔFSM; i?: INPUTS; o!: OUTPUTS 

 

(current, i?) � dom transition � current′ = transition(current, i?) � o! = output(current, i?) � 

transition′ = transition � output′ = output 

 

Here, only final states are not defined. 

 

INTO THE CSP 

Let finite state machine is defined as follows: STATES = {q0, q1, … , qn} is the set of 

states; INPUTS = {i1, i2, … , im} is the set of input symbols; OUTPUTS = {o1, o2, … , op} is 

the set of output symbols; FINALS = {f1, f2, … , fq} is the set of final states. The 

communicating sequential process P modeling finite state machine is represented as a 

choice P = {x: B -> P(i)}, where B is the set of indexes of the states B = 0..n, and then P = 

{i: 0..n -> P(i)}. This process communicates with the environment via two channels in and 

out. The channels and process alphabets are α(in) = { i1, i2, … , im}, α(out) = {o1, o2, … , 

op}, α(P) = α(in) U α(out). Every expression P(i) is represented by a process modeling finite 

state automata behavior in state qi: P(i) = Pi, i = 0, … , n. Let’s see now what is Pi. If qi is a 

final state then Pi = SKIP. If qi is not a final state then the transition function is defined for 

qi and some subset of input events {ii1, ii2, … , iis}. Let these transitions be: (qi, iij) � qij for j 

= 1, … , s. The subexpression for this transition is: in?iij -> Pij for j = 1, … , s. If the output 

is defined for this transition, i.e. (qi, iij) � oij, then this subexpression will be: in?iij -> out!oij -

> Pij. The whole Pi is Pi = in? ii1 -> out!oi1 -> Pi1 | in?ii2 -> out!oi2 -> Pi2 | … | in?iis -> out!ois 

->Pis Note: output communications are not defined for all transitions. 

Now, let’s see how this looks for the examples. 

EXAMPLE 1 – HOSPITAL: 

Hospital = {s: {q0, patients, fields, setup, ready, beam_on } -> Q(s)} 

Qstart = in?enter -> Qfields; Qpatients = in?enter -> Qfields 
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Qfields = in?select_patient -> Qpatients | in?enter -> Qsetup 

Qsetup = in?select_patient -> Qpatients | in?select_field -> Qfileds | in?on -> Qready 

Qready = in?select_patient -> Qpatients | in?select_field -> Qfileds |  

in?intkl -> Qsetup | in?start -> Qbeam_on 

Qbeam_on = in?intkl -> Qsetup | in?stop -> Qready 

EXAMPLE 2 – SUMMATOR: 

Summator = {s: {q0, P0, P1} -> P(s)}; Pq0 = in?init -> Pp0 

Pp0 = in?00 -> out!0 -> Pp0 | in?01 -> out!1 -> Pp0 | in?10 -> out!1 -> Pp0 |  

in?11 -> out!0 -> Pp1 

Pp1 = in?00 -> out!1 -> Pp0 | in?01 -> out!0 -> Pp1 | in?10 -> out!0 -> Pp1 |  

in?11 -> out!1 -> Pp1 

 

IMPLEMENTATION IN PAT 3 

Process Analysis Toolkit [8] is an enhanced simulator, model checker and refinement 

checker for concurrent and real-time systems. It implements a version of CSP. Let’s see 

our examples implemented in PAT 3. 

EXAMPLE 1 – HOSPITAL: 

enum {q0, patients, fields, setup, ready, beam_on}; 

enum {select_patient, select_field, enter, ok, start, stop, intlk, end}; 

#define error -1; channel in 0; channel out 0; 

#alphabet Q{in.enter, in.select_patient, in.select_field, in.ok, in.intlk, in.start, in.stop,  

in.end}; 

Q(state) = case {state == q0: in?enter -> Q(fields) [] in?end -> Skip 

  state == patients: in?enter -> Q(fields) [] in?end -> Skip 

  state == fields: in?select_patient -> Q(patients) [] in?enter -> Q(setup)  

    [] in?end -> Skip 

  state == setup: in?select_patient -> Q(patients) [] in?select_field -> Q(fields)  

    [] in?ok -> Q(ready) [] in?end -> Skip 

  state == ready: in?select_patient -> Q(patients) [] in?select_field -> Q(fields)  

    [] in?intlk -> Q(setup) [] in?start -> Q(beam_on) [] in?end -> Skip 

  state == beam_on: in?intlk -> Q(setup) [] in?stop -> Q(ready) [] in?end -> Skip 

  default: out!error -> Stop}; 

System() = in!enter -> in!enter -> in!ok -> in!start -> in!end -> Skip ||| Q(q0); 

#assert System() deadlockfree; #assert System() deterministic; 

Here, events and states are defined as constants (named numbers) with enum. An 

event error is defined, because there is no other way of control on process parameters. If 

an error parameter is accepted by the process, then on out channel error event is sent. 

Input and output channels have to be defined not buffered. The alphabet of the process is 

restricted to the given one. The main difference is in the implementation of the process; 

instead for every choice alternative to be delivered as different process, process 

expressions are included directly in the choice operator. The choice is CSP is simply an 

operator defined on a set of events, but here in this implementation choice can be defined 

on process parameters. This idea processes to have parameters, is used in some versions 

of CSP, but not in the original representation. Finally, the system can be checked for many 

properties like deadlock free, determinism etc. These checks are put at the end of the 

specification and can be verified, but only processes without parameters can be verified, 

that is why such a process communicating with the machine is defined and checked. 

EXAMPLE 2 – SUMMATOR: 

enum {q0, P0, P1}; enum {initialize, i00, i01, i10, i11, end}; enum {o0, o1, error}; 

channel in 0; channel out 0; 

#alphabet P{in.initialize, in.i00, in.i01, in.i10, in.i11, o.0, o.1}; 

P(state) = case {state == q0: in?initialize -> P(P0) [] in?end -> Skip 

  state == P0: in?i00 -> out!o0 -> P(P0) [] in?i01 -> out!o1 -> P(P0)  



НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2010, том 49, серия 6.1 
 

 - 71 - 

    [] in?i10 -> out!1 -> P(P0) [] in?i11 -> out!o0 -> P(P1) [] in?end -> Skip 

  state == P1: in?i00 -> out!o1 -> P(P0) [] in?i01 -> out!o0 -> P(P1)  

    [] in?i10 -> out!0 -> P(P1) [] in?i11 -> out!o1 -> P(P1) [] in?end -> Skip 

  default: out!error -> Stop}; 

System() = in!initialize -> in!i00 -> out?x -> in!end -> Skip ||| P(q0); 

#assert System() deadlockfree; #assert System() deterministic; 

In this example, output function is included. One more addition is that end event is 

added to stop the machine in every state. This process can be implemented with a global 

variable instead of process parameters, like that: 

enum {q0, P0, P1}; enum {initialize, i00, i01, i10, i11, end}; enum {o0, o1, error}; 

channel in 0; channel out 0; var state = q0; 

#alphabet P{in.initialize, in.i00, in.i01, in.i10, in.i11, o.0, o.1}; 

P() = case {state == q0: in?initialize -> {state = P0} -> P [] in?end -> Skip 

  state == P0: in?i00 -> out!o0 -> {state = P0} -> P [] in?i01 -> out!o1 -> {state = P0} -> P 

    [] in?i10 -> out!1 -> {state = P0} -> P [] in?i11 -> out!o0 -> {state = P1} -> P  

    [] in?end -> Skip 

  state == P1: in?i00 -> out!o1 -> {state = P0} -> P [] in?i01 -> out!o0 -> {state = P1} -> P 

    [] in?i10 -> out!0 -> {state = P1} -> P  

    [] in?i11 -> out!o1 -> {state = P1} -> P [] in?end -> Skip 

  default: out!error -> Stop}; 

System() = in!initialize -> in!i00 -> out?x -> in!end -> Skip ||| P(); 

#assert P() deadlockfree; #assert P() deterministic; 

But this implementation is not so clear and diverges from CSP. In above example, 

some properties are impossible to be checked, because the verifier is not sure about the 

contents of the global variable state. It finds out that the process is deterministic, but thinks 

that it is not deadlock free. Here, we will stop and will not go in further details what is 

possible and what is not to do with the tool. 
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