
НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 66 -

Finite State Automata Semantics in Communicating Sequential

Processes

Vladimir Dimitrov

Finite State Automata Semantics in Communicating Sequential Processes: Traditionally,

distributed systems and protocols are described with finite state automata. Later on, other more powerful

mathematical tools for specification and analyses of distributed systems have been developed, such as Petri

nets, CSP etc. Modern tools and notations for specification, development and implementation of distributed

systems are based on them. In commercial tools, that use finite state automata, as a base for business

process specification, the problem is the need to convert older specifications into new one without losing the

semantics. Newly developed tools are based on Petri nets or CSP. They are more powerful in specification

and analyses, but they have to support continuity. Intention of this paper is formally to specify finite state

automata in CSP. Finite state automata semantics is clear, but there are needs for conversion of business

processes specified in them to new form without losing the semantics.

Key words: Finite State Automata, Communicating Sequential Processes, Semantics.

MOTIVATION

Traditionally, distributed systems and protocols are described with finite state

automata (finite state machines). As result of that, many tools based on finite state

automata have been developed and used. Such an example is business state machines

used in IBM WebSphere Integration Developer [1]. Later on, other more powerful

mathematical tools for specification and analyses of distributed systems have been

developed, such as Petri nets [2], CSP [3], and so on. Modern tools and notations for

specification, development and implementation of distributed systems are based on them.

For example, Petri nets concepts are broadly used for specification of business processes

in notations like UML (activity diagrams) [4], WS-BPEL [5], BPMN [6], etc. The newer

mathematical tools are more powerful that the older ones. For example, Petri nets have

more expressive power than finite state automata, but are less expressive than CSP. Our

intention, here in this paper, is not to compare them. In commercial tools, that use finite

state automata, as a base for business process specification, the problem is the need to

convert older specifications into new one without losing the semantics. Newly developed

tools are usually based on Petri nets or CSP. They are more powerful in specification and

analyses, but they have to support continuity with the older developments. Such an

example is IBM WebSphere Integration Developer that nowadays is based on WS-BPEL,

but has to support backward compatibility with the business state machines. Intention of

this paper is formally to specify finite state automata in CSP. Finite state automata

semantics is clear, but there are needs for conversion of business processes specified in

them to new form without losing the semantics.

DEFINITIONS

There are many kinds of finite state automata: deterministic, non-deterministic, Mealy

machines, Moor machines etc. Some extensions like Turing machine get outside the

expressive power of finite state automata, but they are not subject of this paper. We will

use the next definition of finite state automata: Finite state automata A with alphabet V is

the 5-tuple A= <K, V, δ, q0, F>, where: K is non empty finite set of automata states; V is

non empty finite set of input symbols - the alphabet; δ is transition function with domain K x

V and range K; q0 ∈ K is the initial state; F � K is the set of final states. It is possible F to

be empty, in this case the machine is executed forever or to stop not in final state. When

automata stop in finite state it has finished normally its work, but if it stops in non final state

– this means that machine is broken in some way. A finite state automata is deterministic if

its transition function is defined in every state for all input symbols, i.e. domain δ is equal to

K x V. If the finite state automata has at least one state for which the transition function is

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 67 -

not defined for all input symbols, then this automata is non deterministic. From the theory,

we know that every non deterministic machine can be modeled deterministic one. This

means that they are equivalent in expressiveness. In some definitions of finite state

automata output alphabet O and output function ω are included. When a transition is

executed, it is possible to be generated some output. Domain of ω is subset of the domain

of δ, but its range is O.

Some examples follow. First example: There are no final states (F =�). This machine

is non-deterministic with: K = {q0, patients, fields, setup, ready, beam_on}; V =

{select_patient, select_field, enter, ok, start, stop, intlk}; δ = {(q0, enter) � fields, (patients,

enter) � fields, (fields, select_patient) � patients, (fields, enter) � setup, (setup,

select_patient) � patients, (setup, select_field) � fields, (setup, ok) � ready, (ready,

select_patient) � patients, (ready, select_field) � fields, (ready, start) � beam_on, (ready,

intlk) � setup, (beam_on, stop) � ready, (beam_on, intlk) � setup}

In the second example, the machine has output: K = {q0, P0, P1}; V = {init, 00, 01,

10, 11}; δ = {(q0, init) � P0, (P0, 00) � P0, (P0, 01) � P0, (P0, 10) � P0, (P0, 11) � P1,

(P1, 00) � P0, (P1, 01) � P1, (P1, 10) � P1, (P1, 11) � P1} O = {NULL, 0, 1}; ω = {(q0,

init) � NULL, (P0, 00) � 0, (P0, 01) � 1, (P0, 10) � 1, (P0, 11) � 0, (P1, 00) � 1, (P1,

01) � 0, (P1, 10) � 0, (P1, 11) � 1}

SPECIFICATION IN Z-NOTATION

Here, we will be more strict specifying finite state automata in Z-notation [7]. Basic

sets are:

[STATES, INPUTS, OUTPUTS]

where STATES is non empty final sets of automata states, INPUTS is the set of input

symbols (events), OUTPUTS is the set of all output symbols.

q0: STATES; NULL: OUTPUTS; FINALS: � STATES

STATES ≠ � � (�n: � � #STATES � n) � INPUTS ≠ � � q0 	 FINALS

where q0 is the initial state, NULL is a special output symbol – nothing is outputted,

FINALS is possible empty subset of STATES – final states.

 FSM

transition: STATES × INPUTS
 STATES; output: STATES × INPUTS
 OUTPUTS

current: STATES

dom output = dom transition � q0 � dom (dom transition) � FINALS � dom (dom transition) = � �

FINALS
 ran transition � STATES � {q0} = ran transition �

STATES � FINALS = dom (dom transition)

Finite states machine consists of transition function, output function and current state.

Transition and output functions have the same domain Cartesian product of STATES and

INPUTS. The initial state q0 is part of the domain of transition function. FINALS states

have only input arcs, but no output arcs. Only q0 has no input arcs. All states, except final

ones, have to have input and output arcs.

 FSMInit

FSM

current = q0

Finite states automate initially starts with current state q0.

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 68 -

 Execute

ΔFSM; i?: INPUTS; o!: OUTPUTS

(current, i?) � dom transition � current′ = transition(current, i?) � o! = output(current, i?) �

transition′ = transition � output′ = output

Execution of finite state automata consists of application of functions transition and

output to the input and the current state. Current state is modified in successful transition.

Here is not defined what the automata will do is an unexpected input in this state is

accepted. There are to possible actions: the first one is not to react and the state to remain

the same; the second is to indicate an error. What approach will be used depend of

automata nature. If the machine is grammar recognition it must react with error. If the

automata is not of that that type it is possible simply to ignore the input and to remain in

the same state. In any case, it is possible the automata to be represented with

deterministic one and then transition function will be total and no such a problem will arise.

Finally, we will do some comments about finite state automata and business

processes. There are two kinds of processes: such that are executed one time and finish

and such that are started and then execute endless. In any case, they have to be

initialized in some way that is why initial state is obligatory. But in the first case final states

are obligatory. The business process cannot stop in another state (except in final states) –

this is design error and has to be checked. Now, let’s see examples. The first example:

STATES ::=q0 | patients | fields | setup | ready | beam_on

INPUTS ::= select_patient | select_field | enter | ok | start | stop | intlk

FINALS: � STATES

STATES ≠ � � (�n: � � #STATES � n) � INPUTS ≠ � � q0 	 FINALS � FINALS = �

 FSM

transition: STATES × INPUTS
 STATES; current: STATES

transition = {(q0, enter) � fields, (patients, enter) � fields, (fields, select_patient) � patients,

 (fields, enter) � setup, (setup, select_patient) � patients, (setup, select_field) � fields,

 (setup, ok) � ready, (ready, select_patient) � patients, (ready, select_field) � fields,

 (ready, intlk) � setup, (ready, start) � beam_on, (beam_on, stop) � ready,

 (beam_on, intlk) � setup } �

q0 � dom (dom transition) � FINALS � dom (dom transition) = � � FINALS
 ran transition �

STATES � {q0} = ran transition � STATES � FINALS = dom (dom transition)

 FSMInit

FSM

current = q0

 Execute

ΔFSM; i?: INPUTS

(current, i?) � dom transition � current′ = transition(current, i?) � transition′ = transition

OUTPUTS and output function are eliminated in this specification, but STATES,

INPUTS and transition are in full details. No output parameter during execution.

The second example is:

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 69 -

STATES ::= q0 | P0 | P1

INPUTS ::= init | i00 | i01 | i10 | i11

OUTPUTS ::= NULL | o0 | o1

FINALS: � STATES

STATES ≠ � � (�n: � � #STATES � n) � INPUTS ≠ � � q0 	 FINALS � FINALS = �

 FSM

transition: STATES × INPUTS
 STATES; output: STATES × INPUTS
 OUTPUTS

current: STATES

transition = {(q0, init) � P0, (P0, i00) � P0, (P0, i01) � P0, (P0, i10) � P0,

 (P0, i11) � P1, (P1, i00) � P0, (P1, i01) � P1, (P1, i10) � P1, (P1, i11) � P1} �

output = {(q0, init) � NULL, (P0, i00) � o0, (P0, i01) � o1, (P0, i10) � o1, (P0, i11) � o1,

 (P1, i00) � o1, (P1, i01) � o0, (P1, i10) � o0, (P1, i11) � o1} �

dom output = dom transition � q0 � dom (dom transition) � FINALS � dom (dom transition) = � �

FINALS
 ran transition � STATES � {q0} = ran transition �

STATES � FINALS = dom (dom transition)

 FSMInit

FSM

current = q0

 Execute

ΔFSM; i?: INPUTS; o!: OUTPUTS

(current, i?) � dom transition � current′ = transition(current, i?) � o! = output(current, i?) �

transition′ = transition � output′ = output

Here, only final states are not defined.

INTO THE CSP

Let finite state machine is defined as follows: STATES = {q0, q1, … , qn} is the set of

states; INPUTS = {i1, i2, … , im} is the set of input symbols; OUTPUTS = {o1, o2, … , op} is

the set of output symbols; FINALS = {f1, f2, … , fq} is the set of final states. The

communicating sequential process P modeling finite state machine is represented as a

choice P = {x: B -> P(i)}, where B is the set of indexes of the states B = 0..n, and then P =

{i: 0..n -> P(i)}. This process communicates with the environment via two channels in and

out. The channels and process alphabets are α(in) = { i1, i2, … , im}, α(out) = {o1, o2, … ,

op}, α(P) = α(in) U α(out). Every expression P(i) is represented by a process modeling finite

state automata behavior in state qi: P(i) = Pi, i = 0, … , n. Let’s see now what is Pi. If qi is a

final state then Pi = SKIP. If qi is not a final state then the transition function is defined for

qi and some subset of input events {ii1, ii2, … , iis}. Let these transitions be: (qi, iij) � qij for j

= 1, … , s. The subexpression for this transition is: in?iij -> Pij for j = 1, … , s. If the output

is defined for this transition, i.e. (qi, iij) � oij, then this subexpression will be: in?iij -> out!oij -

> Pij. The whole Pi is Pi = in? ii1 -> out!oi1 -> Pi1 | in?ii2 -> out!oi2 -> Pi2 | … | in?iis -> out!ois

->Pis Note: output communications are not defined for all transitions.

Now, let’s see how this looks for the examples.

EXAMPLE 1 – HOSPITAL:

Hospital = {s: {q0, patients, fields, setup, ready, beam_on } -> Q(s)}

Qstart = in?enter -> Qfields; Qpatients = in?enter -> Qfields

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 70 -

Qfields = in?select_patient -> Qpatients | in?enter -> Qsetup

Qsetup = in?select_patient -> Qpatients | in?select_field -> Qfileds | in?on -> Qready

Qready = in?select_patient -> Qpatients | in?select_field -> Qfileds |

in?intkl -> Qsetup | in?start -> Qbeam_on

Qbeam_on = in?intkl -> Qsetup | in?stop -> Qready

EXAMPLE 2 – SUMMATOR:

Summator = {s: {q0, P0, P1} -> P(s)}; Pq0 = in?init -> Pp0

Pp0 = in?00 -> out!0 -> Pp0 | in?01 -> out!1 -> Pp0 | in?10 -> out!1 -> Pp0 |

in?11 -> out!0 -> Pp1

Pp1 = in?00 -> out!1 -> Pp0 | in?01 -> out!0 -> Pp1 | in?10 -> out!0 -> Pp1 |

in?11 -> out!1 -> Pp1

IMPLEMENTATION IN PAT 3

Process Analysis Toolkit [8] is an enhanced simulator, model checker and refinement

checker for concurrent and real-time systems. It implements a version of CSP. Let’s see

our examples implemented in PAT 3.

EXAMPLE 1 – HOSPITAL:

enum {q0, patients, fields, setup, ready, beam_on};

enum {select_patient, select_field, enter, ok, start, stop, intlk, end};

#define error -1; channel in 0; channel out 0;

#alphabet Q{in.enter, in.select_patient, in.select_field, in.ok, in.intlk, in.start, in.stop,

in.end};

Q(state) = case {state == q0: in?enter -> Q(fields) [] in?end -> Skip

 state == patients: in?enter -> Q(fields) [] in?end -> Skip

 state == fields: in?select_patient -> Q(patients) [] in?enter -> Q(setup)

 [] in?end -> Skip

 state == setup: in?select_patient -> Q(patients) [] in?select_field -> Q(fields)

 [] in?ok -> Q(ready) [] in?end -> Skip

 state == ready: in?select_patient -> Q(patients) [] in?select_field -> Q(fields)

 [] in?intlk -> Q(setup) [] in?start -> Q(beam_on) [] in?end -> Skip

 state == beam_on: in?intlk -> Q(setup) [] in?stop -> Q(ready) [] in?end -> Skip

 default: out!error -> Stop};

System() = in!enter -> in!enter -> in!ok -> in!start -> in!end -> Skip ||| Q(q0);

#assert System() deadlockfree; #assert System() deterministic;

Here, events and states are defined as constants (named numbers) with enum. An

event error is defined, because there is no other way of control on process parameters. If

an error parameter is accepted by the process, then on out channel error event is sent.

Input and output channels have to be defined not buffered. The alphabet of the process is

restricted to the given one. The main difference is in the implementation of the process;

instead for every choice alternative to be delivered as different process, process

expressions are included directly in the choice operator. The choice is CSP is simply an

operator defined on a set of events, but here in this implementation choice can be defined

on process parameters. This idea processes to have parameters, is used in some versions

of CSP, but not in the original representation. Finally, the system can be checked for many

properties like deadlock free, determinism etc. These checks are put at the end of the

specification and can be verified, but only processes without parameters can be verified,

that is why such a process communicating with the machine is defined and checked.

EXAMPLE 2 – SUMMATOR:

enum {q0, P0, P1}; enum {initialize, i00, i01, i10, i11, end}; enum {o0, o1, error};

channel in 0; channel out 0;

#alphabet P{in.initialize, in.i00, in.i01, in.i10, in.i11, o.0, o.1};

P(state) = case {state == q0: in?initialize -> P(P0) [] in?end -> Skip

 state == P0: in?i00 -> out!o0 -> P(P0) [] in?i01 -> out!o1 -> P(P0)

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2010, том 49, серия 6.1

 - 71 -

 [] in?i10 -> out!1 -> P(P0) [] in?i11 -> out!o0 -> P(P1) [] in?end -> Skip

 state == P1: in?i00 -> out!o1 -> P(P0) [] in?i01 -> out!o0 -> P(P1)

 [] in?i10 -> out!0 -> P(P1) [] in?i11 -> out!o1 -> P(P1) [] in?end -> Skip

 default: out!error -> Stop};

System() = in!initialize -> in!i00 -> out?x -> in!end -> Skip ||| P(q0);

#assert System() deadlockfree; #assert System() deterministic;

In this example, output function is included. One more addition is that end event is

added to stop the machine in every state. This process can be implemented with a global

variable instead of process parameters, like that:

enum {q0, P0, P1}; enum {initialize, i00, i01, i10, i11, end}; enum {o0, o1, error};

channel in 0; channel out 0; var state = q0;

#alphabet P{in.initialize, in.i00, in.i01, in.i10, in.i11, o.0, o.1};

P() = case {state == q0: in?initialize -> {state = P0} -> P [] in?end -> Skip

 state == P0: in?i00 -> out!o0 -> {state = P0} -> P [] in?i01 -> out!o1 -> {state = P0} -> P

 [] in?i10 -> out!1 -> {state = P0} -> P [] in?i11 -> out!o0 -> {state = P1} -> P

 [] in?end -> Skip

 state == P1: in?i00 -> out!o1 -> {state = P0} -> P [] in?i01 -> out!o0 -> {state = P1} -> P

 [] in?i10 -> out!0 -> {state = P1} -> P

 [] in?i11 -> out!o1 -> {state = P1} -> P [] in?end -> Skip

 default: out!error -> Stop};

System() = in!initialize -> in!i00 -> out?x -> in!end -> Skip ||| P();

#assert P() deadlockfree; #assert P() deterministic;

But this implementation is not so clear and diverges from CSP. In above example,

some properties are impossible to be checked, because the verifier is not sure about the

contents of the global variable state. It finds out that the process is deterministic, but thinks

that it is not deadlock free. Here, we will stop and will not go in further details what is

possible and what is not to do with the tool.

ACKNOWLEDGMENTS

This research is supported by Project 240/2010 “Development of Grid infrastructure

for research and education” funded by the Scientific Research Fund of University of Sofia.

REFERENCES

[1] IBM WebSphere Process Server and WebSphere Integration Developer, Version:

V6.0.2, Business state machines, http://publib.boulder.ibm.com/infocenter/ieduasst/

v1r1m0/index.jsp?topic=/com.ibm.iea.wpi_v6/wpswid/6.0.2/BusinessStateMachine.html

[2] Petri net, http://en.wikipedia.org/wiki/Petri_net

[3] Communicating sequential processes, http://en.wikipedia.org/wiki/

Communicating_sequential_processes

[4] UML, http://www.uml.org

[5] OASIS Web Services Business Process Execution Language (WSBPEL) TC,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

[6] BPMN, http://www.bpmn.org/

[7] Z-notation, http://en.wikipedia.org/wiki/Z_notation

[8] Process Analysis Toolkit, http://www.comp.nus.edu.sg/~pat/

За контакти:

Доц. д-р Владимир Димитров, Катедра “Компютърна информатика”, Факултет по

математика и информатика, СУ “Св. Климент Охридски”, тел.: 082-888 212, е-mail:

cht@fmi.uni-sofia.bg

Докладът е рецензиран.

