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Multiple Regression Analysis in Teaching Statistics by R Software: This paper presents the 

necessity to introduce the students majoring in ‘Computer Systems and Technologies’ or ‘Informatics’ in the 

applications of the software R to Statistics. This programming model develops student’s memory and helps 

them to better understand the theory.  
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INTRODUCTION 

Students taking a Statistics class are required to understand, apply, and use a large 

volume of statistical formulas and methods. Aquiring such large volume of quantitative 

knowledge will not be efficient enough without illustrating the appropriate applications. It 

requires appropriate software. 

Different programming models, for different operation systems (OS), are necessary 

when teaching the numerical procedures in statistics. Such sorts of software models are 

MATLAB, SPSS, MS EXCEL, etc. The software R accompanies their functionality entirely 

and it is absolutely free. Also it can be installed on the most frequently used OS - 

Windows, Linux and Mac OS. This allows its easier introduction in teaching.  

In particular, in this paper we are going to consider Multiple Regression Analysis, 

realized by the R software.   

 

MAIN RESULTS  

First, let us recall the definition of Regression Analysis (RA).  

Definition: RA is a method for modeling the functional relationship between a 

dependent variable, У and one or more predictor variables (independent variables) Х
i
. RA 

is also used to understand which among the predictor variables are related to the 

dependent variable, and to explore the forms of these relationships. More specifically, RA 

is a method for investigating the functional relationship among variables or RA can be 

used to determine relationships between У and Х
i
. 

It is common for more than one factor to influence an outcome У. Fitting regression 

models to data involving two or more predictors Х
i
 is one of the most widely used statistical 

procedures.   

On linear and nonlinear RA by R software - brief description. 

Example 1. The 10 statistical data points are observed (Table 1). Let Х and Y be 

economical indicators. We are going to call Y dependent variable and X – predictor 

variable. At this data we want to develop a regression equation to model the relationship 

between Y and Х and find a 95% prediction interval for Y when the value of Х is fixed, for 

instance Х = 72.   

Table 1 

Dependent variable У 75 115 90 105 90 144 120 220 145 160

Predictor variable Х 60 91 70 85 72 87 78 120 90 150

First, we begin by considering the simple linear regression model. 

The equation of linear regression has the following form: 

 xaay
10

+=

∧

  (1) 

where  

∧

y  is the theoretical (fitting) value of dependent variable Y; 

х is a value of the predictor variable Х; 
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a
i
, i = 1, 2 are the coefficients, chosen by the method of the least square, i.e., such 

that the sum of squared residuals of the linear model (1) is minimal. 

We define two vectors 

> y<-c(75,115,90,105,90,144,120,220,145,160) 

> x<-c(60,91,70,85,72,87,78,120,90,150) 

Next, we draft a plot of the relationship between Y and X (Figure 1) and a plot of 

dependence between the standardized residuals from model (1) and the predictor Х 

(Figure 2): 

> plot(x,y) 

 

Figure 1 

> fm1<-lm(y~x); StanRes1<-rstandard(fm1) 

> plot(x,StanRes1,ylab="Standartized Residuals")  

 

Figure 2 

A curved pattern resembling a quadratic shape is clearly evident in Figure 2. Then we 

begin by considering the nonlinear regression model: 

2

210
xaxaay ++=

∧

.  (2) 

Following the same steps, as above we get: 
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> fm2<-lm(y~I(x^2)+x)  

> xnew<-seq(20,110,len=10); dummy<-data.frame(x=xnew) 

> lines(x,predict(fm2,newdata=dummy)) 

> StanRes2<-rstandard(fm2); plot(x,StanRes2,ylab="Standartized Residuals") 

The random pattern indicates that model (2) is a valid model for the Y data. 

Figure 3 shows a plot of the dependence between the predictor Х and the leverage 

from model (2). It is evident from Figure 3 that the smallest and the largest x-values are 

leverage points: 

> leverage2<-hatvalues(fm2); plot(x,leverage2); abline(h=0.4,lty=2) 

Here the height h=0.4 of the horizontal dashed line is calculated by the formula: 

variablesobservednumber

1predictorsnumber2

h

)( +

=  

 

Figure 3 

Furthermore, we can see four other summary diagnostic plots, produced by the 

following function of R: 

> par(mfrow=c(2,2)); plot(fm2) 

Once we verify that (2) is a valid regression model, we can use the following 

command to summarize the results: 

> summary(fm2) 

In particular, we get the corresponding equation: 6.55x0.03x-244.71y
2

+−=

∧

. 

We can also make a prediction for X, say Х = 72, in the following way: 

> predict(fm2,newdata=data.frame(x=c(72)),interval="prediction",level=0.95 ) 

              fit             lwr            upr 

1 96.79107  37.82577  155.7564  

It gives the respective fitting value of the dependent variable 

∧

y  and a 95% prediction 

interval. In our case, for X = 72, the 95% prediction interval is (37.83, 155.76). 

We are going to show an advantage of R over to MS Excel. Namely, we change the 

settings of an example from [3] by adding a nonlinear regression. In the new settings MS 

Excel can not be used, while R is very efficient.  

Example 2 (see [3]). The 10 statistical data points are given in Table 2. Let Х
i
, i = 1, 2 

and Y be economical indicators. We call Y dependent variable and Х
i
, i = 1, 2 – predictor 
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variables. At this data we want to determine the parameters in the equation of the linear 

and nonlinear (polynomial) regression and to make a regression analysis.  

Table 2 

№ of the observed variable Dependent 

variable У 

Predictor Х
1
 Predictor Х

2
 

1 150 138 400 

... ... ... ... 

10 63 51 165 

In this example, the equation of linear regression has the following form: 

 
22110

xaxaay ++=

∧

, (3) 

and the equation of nonlinear (polynomial) regression: 

2

24

2

1322110
xaxaxaxaay ++++=

∧

, (4) 

Here  

∧

y  is the theoretical (fitting) value of dependent variable Y; 

х
i
, i = 1, 2 are values of the predictor variables Х

i
; 

a
i
, i = 1, 2, 3, 4 are the coefficients, determined by the method of the least square. 

Now, we need to introduce our data from Table 2 to determine the coefficients of the 

corresponding linear and nonlinear (polynomial) regression.  

> y<-c(150,180,75,123,28,200,136,55,101,63) 

> x1<-c(138,170,61,99,20,147,125,40,90,51) 

> x2<-c(400,320,153,245,60,550,302,120,205,165)  

After we introduced the statistical data, we apply the regression models by executing 

the following sequences: 

the simple linear regression model the nonlinear (polynomial) regression model  

> fm1<-lm(y~x1+x2) 

> summary(fm1) 

> fm2<-lm(y~I(x1^2)+I(x2^2)+x1+x2) 

> summary(fm2) 

The results of the simple linear regression model realized by R and MS Excel (see 

[3]) are analogous. In this case the equation has the following form: 

21
0.15x0.73x6.08y ++=

∧

. (5) 

From this results (as well as in MS Excel) it follows that the free coefficient а
0
 is not 

statistically significant, and the coefficients a
i
, i = 1, 2 are statistically significant. Then 

using the command 

> fm1<-lm(y~x1+x2+0); summary(fm1) 

and we obtain the following equation  

21
0.15x0.77xy +=

∧

, (6) 

which is statistically significant. 

The result of the nonlinear (polynomial) regression model is: 

Call: 

lm(formula = y ~ I(x1^2) + I(x2^2) + x1 + x2) 

Residuals: 

        1         2         3         4         5         6         7         8          9      10  

-8.589  3.431 -0.529  9.171 -4.586  3.081 -3.881  4.052 -5.186  3.035  

Coefficients: 

                      Estimate     Std. Error    t value   Pr(>|t|)   

(Intercept) 15.5739159  10.8664907     1.433   0.2112   

I(x1^2)       -0.0032035    0.0023399    -1.369   0.2293   

I(x2^2)        0.0005434    0.0003259     1.667   0.1563   

x1               1.7494796    0.6813738     2.568   0.0502 . 
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x2              -0.3108696    0.2762495    -1.125   0.3116   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 7.322 on 5 degrees of freedom 

Multiple R-squared: 0.9907,     Adjusted R-squared: 0.9832  

F-statistic: 132.6 on 4 and 5 DF,  p-value: 2.931e-05 

The equation of the regression is the following:  

21

2

2

2

1
0.31x1.75x0.0005x0.003x15.57y −++−=

∧

. (7) 

Note however, that only the coefficient in front of x
1
 is statistically significant (see 

column Pr(>|t|)). Hence the linear model is better than the polynomial. Let us point out 

again that the analysis of the polynomial regression model (7) can not be done with MS 

Excel. 

Once we verify that the model (6) is acceptable, we can plot several graphs: a plot of 

the relationship between the predictors х
i
, i = 1, 2 and the dependent variable y. So we 

introduce: 

> plot(x1,y); abline(lsfit(x1,y)); plot(x2,y); abline(lsfit(x2,y)) 

The plot between the predictors х
i
, i = 1, 2 and the standardized residuals from the 

regression model (6). We introduce: 

> par(mfrow=c(2,2)); plot(x1,fm1$residuals,ylab="Residuals",main="Grafika") 

> abline(lsfit(x1,fm1$residuals)) 

> plot(x2,fm1$residuals,ylab="Residuals",main="Grafika") 

> abline(lsfit(x2,fm1$residuals)) 

We can also find a 95% prediction interval for the coefficients in the regression 

equation through: 

> round(confint(fm1,level=0.95),3) 

                    2.5 % 97.5 % 

x1                0.541   0.993 

x2                0.067   0.233 

as well as a 95% prediction interval for the dependent variable у and for its fitting value 

∧

y  

respectively: 

> predict(fm1,newdata=dummy,interval="prediction",level=0.95) 

> predict(fm1,newdata=dummy,interval="confidence",level=0.95) 

 

CONCLUSIONS 

The above examples illustrate that the R software is very useful for learning the 

theoretical material of RA. 
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