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Abstract: The representation of quantum energy-momentum tensor of a particle via a sequence of 4-

dimensional discrete pure matter energy-momentum tensors leads to real dispersion of momentum and 

relativistic uncertainty relations.  
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INTRODUCTION 

In quantum physics, the uncertainty principle is expressed as mathematical 

inequalities asserting a fundamental limit to the precision by which certain pairs of physical 

quantities of a particle, e.g. position x and momentum p, can be simultaneously known. 

The original argument that such a limit should exist was given by Heisenberg [1]. This 

interpretation is based upon the reasoning that the uncertainty inequalities arise only from 

the wave properties inherent in the quantum mechanical description of nature [2].  

Here we shall talk over the existence of another possibility extrapolating the Shan's 

idea of discrete motion of quantum particles [3] to the hypothesis of 4-dimensional discrete 

existence of quantum particles. This can be done having in mind the representation of the 

energy-momentum tensor of any quantum particle through averaging of certain sequences 

of sub-quantum units whose existence is discrete not only into space, but also in time [4].  

The purpose of the work is to prove that the quantum uncertainty relations follow also 

from the averaged energy-momentum tensor representation of these sequences of 4-

dimensional discrete sub-quantum units, defined upon a specific discrete lattice over the 

continual Minkowski space. 

 

DISCRETE ENERGY-MOMENTUM TENSOR OF A SCALAR PARTICLE 

In special relativity theory the energy-momentum tensor (EMT) is a basic 

mathematical model of the objects structure. A set of localized 3D matter units is 

presented by summation of a set of second rank tensors of dust particles type [5] 
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The 4-dimesional δ-function, taken as distribution in the above tensor, is defined 

along the world line of the particle depending on the continuous time variable (τ) and 

integration takes place over a small 4D volume. Due to this fact the above tensor is 

dependent only on 3D variables of space and 3D velocities of different particles 

enumerated by the index a.  

Now we introduce a standing scalar wave sequence of 4D singularities and the 

hypothesis is that it represents the corpuscular part of the quantum wave-particle. The 

notations below are as follows: a scalar function 1±=
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ε  defined over the set of natural 

numbers N (n = 1, 2, 3, £); a discrete (finite or countable) sequence [
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x ] of events in the 
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], ( Ν∈∀= n;3,2,1,0α ) is a set of four-dimensional vectors in the events 
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their scalar product 1=
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β . By means of these a discrete standing wave sequence of 

flashing on and off singularities represented by pure matter tensor field singularity 

distribution considered on the above discrete sequence of space-time events [

n

x ] ( Nn∈ ) 

is introduced: 
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Here h is the Planck's quantum of action and c is the speed of light.  

By means of this tensor field (2.1) we represent the flashing on and off indivisible 

magnitudes or quanta as a set of pure matter EMTs whose densities are 4D δ-functions. 

We assume that between all different arrangements of these discrete sets [

n

x ] there exists 

one that is natural for a given quantum particle. We consider tensors of the type (2.1) as 

4D discrete and singular micro-scale energy-momentum tensors of quantum particles. The 

connection between them and the wave characteristics of some quantum objects is 

discussed in [4, 6].  

 A macroscopic averaging (integration) of the above-introduced micro-scale EMT over 

a given space-time volume element ΔΩ  leads to tensor field of the form 

ΔΩ

=ΔΩ

∑
=

p

uuhc

t

p

i

iii

1

)(

βα

αβ

ε

. (2.2) 

Here the summation is over all of the singularities disposed into the regionΔΩ . If ΔΩ  and 

'ΔΩ  are two adjacent “physically infinitely small” space-time volumes, the respective 

tensors )(ΔΩ
αβ
t  and )'(ΔΩ

αβ
t  discern “physically infinitely little”. Thus, macroscopically 

αβ
t  

appears as a continuous function in Minkowski space. We assume that the average value 

(2.2) of the tensor distribution (2.1) over any physically small region in space-time can be 

represented in the form of a pure matter tensor, i.e. 
βααβ

ρ uut = , provided that all usual 

requirements of smoothness of the scalar density ρ and four-vectors 
α

u over a certain 

region of space-time are fulfilled.  

 

CONTINUAL ENERGY-MOMENTUM TENSOR OF A SCALAR PARTICLE IN ONE-

DIMENSIONAL POTENTIAL WELL 

 The wave function for a scalar particle in one-dimensional potential well is a solution 

to Klein-Gordon equation ( ) ∇•∇=Δ∂∂∂=∂=Ψ+Δ−∂
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=  is the wave number and m
0
 is the rest mass of the particle. This 

wave function differs from zero (Ψ≠0) inside a two-dimensional region that is given 

by ( ) [ ]}{ dxx ,0,,
0

∈+∞∞−∈=Ω , where d is the size of the well. We consider the simplest case 

of stationary solutions
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of the wave vector of the quantum particle. The boundary condition 0),(
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 The continual EMT of any particle is found by means of Noether’s theorem [8]. The 

normalized to the macroscopic energy-momentum 
00

ckEP h== of a quantum particle EMT 

is given by   
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In the case of the above considered stationary solutions in one dimensional 

potential well the components of this EMT are as follows  
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Consider two unit vectors ),(and),(
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, defined in the 

coordinate system of the tensor Tαβ and suppose their definition region is the same as it is 

for Tαβ. These vectors may be used to construct two pure matter energy-momentum 

tensors as follows  
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Let us represent the normalized energy-momentum tensor Tαβ by the following 

equation 
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The last suggestion for the structure of EMT together with the normalization condition of 

the vectors 
i

u to unity leads to a quadratic algebraic system of equations that is 
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The solution of these equations for the scalar density function χ is 
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The components of the unit vectors are as follows 
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It is obvious that these components are singular functions over the borders of the 

definition region x = 0 and x = d. 

 

DISPERSIONS OF AVERAGED EMT AND UNCERTAINTY RELATIONS  

The representation of the quantum field EMT via a sequence of pure matter tensors  
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leads directly to a relativistic modification of Heisenberg uncertainty relations. This will be 

proved by the following considerations. The differential of the momentum is  
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The total momentum in the definition interval [0, d] will be 
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The last integral transforms into elliptic integral by change of variables 2πϕϕ −→ and the 

fact that )2(sincos
22

πϕϕ −= . Let 2πϕα −= . Now, if ],0[ πϕ∈ , then ]2,2[ ππα +−∈ . 

Using the relativistic relation between the wave-vectors 
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The function under the last integral is symmetric in relation to the medium 0=α of the 

integration interval, so we get   
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where )2,( πbE is complete elliptic integral of second kind [9]. If b < 1, )2,( πbE > 1 always 

and if b = 1 then 1)2,( =πbE .  

Since the particle is confined in a potential well, i.e. in the region dx =Δ we conclude 

that 
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Because of the fact that the complete elliptic integral of second kind 1)2,( >πbE  

always it follows that the following inequality holds 
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characteristic feature of this result is that it gives us an opportunity to make an evaluation that leads to
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Therefore, taking into consideration (4.9) and (4.10), it turns out that the product of 

the relativistic momentum and position dispersions has a lower and upper limit, i.e. can be 

written as  

cxPc hh π<ΔΔ<22 . (4.11) 

The conclusion following from the last inequalities is that as much as the energy of a 

particle (k
0 

>>
 
k) is bigger, so much bigger is the dispersion of momentums of the 

corresponding sequence of 4D singularities in the region dx =Δ . This means that so much 

inaccurate would be the measurement of the momentum 
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As one can notice from the above considerations these inaccuracies have a lower 

and upper limit depending on the size of the region (Δx = d) in which we are trying to 

localize the particle. 

 

CONCLUSIONS 

The above obtained relations (4.11) and (4.12) following from the hypothesis that the 

EMT of a quantum particle (in a potential well) can be decomposed into a set of discrete 

and singular in space-time pure matter tensors are the relativistic uncertainty relations 

between the coordinate and the corresponding component of the momentum. In contrast 

to the Copenhagen interpretation of quantum mechanics [10] we suggest that the wave 

function, together with the corresponding energy-momentum tensors, is an objective 

characteristic of the matter state. Hence, ∆P is a dispersion of the momentum that really 

exist in the region of size ∆x = d, where the wave-particle is confined. In other words, the 

uncertainties ∆P and ∆x in the inequalities (4.11) and (4.12) are conditioned by the very 

nature of matter and only after that from the imperfection of our measurements or 
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measuring devices. In addition to that we found the existence of two limits to the 

dispersion of relativistic momentum – the left and right sides of inequalities in (4.12).  

The standard Heisenberg relations in non-relativistic limit are 2h>ΔΔ xP and they are 

usually connected with the fact that the operators of momentum and position do not 

commute. Using the tensor approach of Noether’s theorem does not require the explicit 

introduction of operators. As it is pointed out in [5] and [6] matter tensors are associated 

with really existing in space-time distributions of objects. Hence, the inequalities (4.11) and 

(4.12) can be considered as ensuing from the existence of real dispersions of some kind of 

discrete and singular sequences of sub-quantum units (2.1). The ‘jumps’ of these units 

over the space-time lattice [

n

x ] ( Nn∈ ) are determined by the relativistic constants h and c. 

Thus, both limits in (4.11) and (4.12) show that the uncertainty which is inherent in the 

nature of quantum things may be considered as limited by their very nature. In terms of 

(4.12) the dispersion of momentum ΔP of a particle in potential well with size d cannot 

be less than dc /22 h and bigger than dc /hπ , i.e. it is limited from below and above. 
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