
НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2012, том 51, серия 6.1

 - 48 -

Z-specification Modelling in UML

Vladimir Dimitrov

Abstract: Development of software models with specialized notations permits non-important details of

the system to be omitted. Z-notation is a tool for specification complex systems using abstract mathematical

notation. Further, Z-specifications could be converted for input on software development environments. UML

is the most popular notation used today in these environments. The aim of this paper is to investigate this

process of conversion of Z-specifications to UML-models. It is based on an example specification of

relational model of data.

Key words: Z-notation, UML, Relational Data Model.

INTRODUCTION

Z-notation [1] has a long history. In 2002 it was accepted as ISO standard. Z-notation

is based on Zermelo–Fraenkel set theory. Z-specifications could be maximally abstracts.

UML [2] has been developed by OMG as notation for object-oriented design. Object-

oriented approach with UML design for software development is de-facto industrial

standard used in commercially available software development environments.

Modeling in UML a Z-specification is described and discussed in this paper. As a Z-

specification is used relational model of data specified in [3].

RELATIONAL SCHEMA

Every Z-specification begins with some basic data types. In [3] for this purpose are

used relational names, relational columns and

values. Column names are used in this

specification only for extension and they are not

modeled in UML. RNAMES and VALUES are modeled initially with classes with the same

names and attributes and operations not specified.

Basic types have to be modeled as classes without attributes and operations

sections. The type DOMAINS is specified as power set of non-empty

finite sets of values (VALUES). In UML, domains are modeled as

compositions of values. The empty domain (empty composition) is

included. It is not a big deviation from the specification – the model

is more general. Every value could be used in more than one

domain, but could not be component of any domain. In UML, by

default, only finite objects are manipulated. For example, the type

Integer is in reality the subset of integers that can be represented on

the computer. Here, a composition consists of finite number of

elements. In UML, finite characteristic of the artifacts is not specified, because it is by

default.

Relational schema is specified as non-empty sequence of domains. It is modeled as

a class that has qualified association (by

attribute ‘index’) with domains. In Z-

notation, sequences are indexed with

naturals. A sequence in mathematics could

be indexed with any countable set. So, it is

not a big deviation in that case instead

naturals to be used Integer for indexing.

The most important property remains:

domains in the schema are ordered.

Database schema is specified as partial function from relation names to schemas.

Database schema is specified as abstract data type. In UML, the same approach could be

used, i.e. database schema could be represented as a class with attributes and

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2012, том 51, серия 6.1

 - 49 -

operations, where an attribute (or attributes) would map relation names to schemas. This

mapping in UML terms is association and it is not recommended association to be hidden

with attributes. That the reason why database schema is modeled as association between

relation names and schemas. Multiplicity of this association is zero or one at both ends.

The association is directed from relation names to schemas, because navigation in the

other direction is not needed at this time. All associations in the diagram are minimal is

sense that direction is specified only when navigation in that direction is used.

Initially, the set of relational schemas is empty. In Z-notation above Z-schema is a

constructor. In this case database schema is not modeled with a class and no constructor

could be created. The association depends on classes that it connects. In object-oriented

systems, the hypothesis is that, when the system starts, there no objects and only after the

initialization new objects and links among them are created. So, by default, the set of links

between relation names and schemas, initially, is empty.

Database schema has three operations: add, remove and update of relation schema.

These operations manage links between RNAMES and SCHEMA.

The problem now is where these operations have to be located? First

location could be the association, i.e. the association between

RNAMES and SCHEMA could be with class-association and

operations could be placed there. In these case operations have to

be static, because they create, remove and update links – instances

of the association. The second possibility is to put them on RNAMES,

where they would be instance operations with side effect on links of

the association. This approach is better, because association, in

reality, is implemented with one or two attributes in one or both

participating classes (association ends are pseudo-attributes in UML)

and every change of the link means change of attributes of these

objects. So, this location is used in the UML-model. There are more possibilities where to

place these operations: in class SCHEMA or in another class modeling database schema.

These variants go way from original concept. First of them is equivalent to the chosen one

only if the association is bidirectional, but it is not true. Second variant could be

implemented only with global side effects of the operations that would be hidden in the

UML-model.

RNAMES is a basic type in the Z-specification, but in the UML-model it has

operations. The effects of last ones are described in OCL pre- and post-conditions. For the

operation Add(), pre-condition require no link to exist between the relation name and any

schema: schema->isEmpty(). Because Add() is now instant operation, it is applied on

RNAMES objects and the relation name is the first argument, by default, for Add(). Post-

condition of Add() requires a link to be established between relation name and the schema

(supplied as argument of Add()) objects: schema = s. Post-condition of operation Add() in

the UML-model differs from that one in the Z-specification. In UML, post-condition refers

only to changed parts and by default all other parts remain unchanged (Frame Problem of

UML). In the Z-specification is clearly stated that all other links between relation names

and schemas remain the same. Here, the only changed part is the link and that is why in

the UML-model of Add() such a post-condition is used. In just a same way, post-conditions

of the other two operations are re-mastered.

Relation names in the relational model of data are strings. In the UML-model they are

objects. Every object in UML is unique, i.e. it has identity, and it follows that relation names

are unique in the UML-model. When the UML-model will be further detailed an attribute of

type string will be introduced in RNAMES to represent the symbolic name of the relation.

This means that an invariant in RNAMES has to be introduced in the future to warranty

that relation names (the string attributes values) are unique. Every RNAMES object has to

have a unique name. With these operations modeling of database schema is finished. In

relational model of data there are logical structure and instance of the database. The first

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2012, том 51, серия 6.1

 - 50 -

one is the database schema. The second one is a set of all relation instances. In the next

section database instance is modeled.

DATABASE INSTANCE

Relational instance is a set of all its tuples in the current moment. For this purpose,

tuples, first, have to be modeled. Tuple is an ordered set of values.

Tuples are modeled with qualified association in the same way as

schema is modeled with domains. Schemas and tuples can be

modeled with attributes. For example, in class TUPLES can be

introduced an attribute of type VALUES with ‘*’ multiplicity. This

approach hides association between tuples and values and it is not

recommended in UML.

Relation is

specified with its

schema and

instance. Relation is modeled in the same

way with the class RELATION. This class

has association with a relation name. The

association shows that every relation has to

have relation name and transitively schema,

but it is not obligatory every relation name to

be bounded with a relation and vice versa.

These constraints are specified with the

structural notation of UML. Every relation

instance is a set of tuples. It is modeled with

an association between relation and tuples.

Relation instance could be empty and it is

modeled with a star for multiplicity put on the association end at the class TUPLES. Every

tuple participates in exactly one relation. Relation tuples must follow relation schema.

Tuples can be associated with relation (relation name) or directly with schema, but closer

to the specification is to be associated with a relation (relation object) as it is modeled with

two invariants:

tuples.values->size() = name.schema->size()

and

let n:Integer = name.schema->size() in Set{1..n}->forAll(i | name.schema.domains[i].

values->includesAll(tuples.values[i]))

Tuples are lists of values from relational model point of view. In object-relational

model every tuple is an object and has its own identity. This means that in object-relational

model two tuples can be just same lists of values and to be different objects by their object

identifiers. The Z-specification is based on the pure relational model. The UML-model

accepts object-relational model: two tuples in one relation can be the same lists of values,

but as TUPLES objects to be different tuples. If pure relational interpretation is needed, in

RELATION an additional invariant could be added to warrantee that all tuples in the

relation are different only when they are different as lists of values. This invariant could be

alternatively part of TUPLES, but that is not the way of the UML-model.

Initially, by the Z-specification, relation instance is empty. This initialization of relation

instance is a constructor in object-oriented terms. It can be modeled as static operation it

RELATION. This operation would bind relation name with relation schema and create an

empty instance for that relation. In the UML-model, constructors of all kinds are not

modeled to simplify the model.

In the specification supporting Z-schema CHECK is introduced to check for tuple

appliance to a relation schema. CHECK is used in relation operations: add and delete

tuple. This check doubles relation invariant and is not needed. If Z-specification is

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2012, том 51, серия 6.1

 - 51 -

extended with checks for errors this supporting Z-schema is needed to

separate successful operations from unsuccessful ones, but this is not

the case. In UML, there are features specially designed for errors –

operation exceptions. So, the operation Insert() simply adds and

operation Delete() removes a tuple to/from the relation instance, i.e. they

add/remove link between the relation and a tuple. The pre-condition of Insert() requires the

new tuple not to be one of the relation instance: tuples->excludes(t), the pre-condition of

Delete() requires the opposite: tuples->includes(t). Insert() post-condition is tuples =

tuples@pre->union(Set{t}). Delete()post-condition is tuples = tuples@pre - Set {t}

Database instance in the Z-specification is a partial function

from relation names into relations. Here, again the problem is to

hide the association with attribute in a class or not. Following UML

recommendations, the second approach is used. Database instance

is modeled with the class DB, which is an aggregate of relations. It

is possible this aggregate to be empty, but every relation has to be

assigned to exactly one database.

Database instance constructor is specified. This constructor is

not modeled following above mentioned reasons.

There are supporting operations DBAdd and DBRemove in Z-

specification. They add/remove relation instance to/from database

instance. The real operations are DBSCreate and DBSDrop.

DBSCreate binds a relation name with a schema and create an

empty instance for the newly created relation. DBSDrop removes relation schema and its

instance. In the UML-model, relational schema and its instance are associated through the

class RELATION. This approach is used the relational model – there is no clear notation

for relation schema and relation instance as in object-oriented approach for class and

class extent. Supporting Z-schemas are not modeled – they are included in modeling of

DBSCreate and DBSDrop in the class DB. The last ones are modeled with the operations

Create() and Drop(). In UML, it is possible to simplify the operations names, because they

are local in the class. In Z-notation, Z-schema names are global and have to be unique.

For that reason in Z-specifications a naming convention for Z-schemas has to be used.

Create() pre-condition is: relation.name->excludes(n) and its post-condition is:

relation.name->includes(n) and n.relation.tuples->isEmpty().

Drop() pre-condition is: relation.name->includes(n) and its post-condition is:

relation.name->excludes(n).

There is one more operation on database instance – DBUpdate. DBUpdate do not

use supporting Z-schemas and it is directly modeled as operation Update() in class DB.

Update() pre-condition is: relation.name->includes(n) and its post-condition is: relation-

>includes(r) and r.name =n.

Finally, in the Z-specification, there are two more Z-schemas for its extension with

named relation columns. This extension is not included in the UML-model, because the

model has to be remastered and step by step modeling would be lost.

CONCLUSION

The most frequently used approach in UML-modeling of Z-specifications is to unhide

hidden associations. Z-notation is a tool for specification of abstract data types. In Z-

specification associations are clearly defined with functions. In UML, association may be

hidden with attributes and its concept becomes hidden for the reader that is why it is

recommended associations to be used instead of attributes.

The UML-model presented here is very abstract – it needs of further re-mastering.

For example, the classes RNAMES and SCHEMA form relational database catalog. The

last one could be implemented with relations, i.e. the catalog has to be described in terms

of relations with self-describing initialization.

НАУЧНИ ТРУДОВЕ НА РУСЕНСКИЯ УНИВЕРСИТЕТ - 2012, том 51, серия 6.1

 - 52 -

The Z-specification is based on

the concept for relational model of

data described in [4]. There

semantics of the model is based on

the domains. In the implementations

of relational model like DB2, Oracle

and so on, this concept is not well

supported. These implementations

are based on SQL that has been

developed as a common query

language for relational and

hierarchical databases, and as result

of that semantics of relational model

has been lost. The whole UML-model

as class diagram is given here.

Relations with column names

are called in [4] ‘relationships’. They

are specified in [5] and Z-

specification there can be used for

development of UML model at higher

level of abstraction.

Finally, relational model is

packed with query language;

relational algebra is proposed in [4]

as such a language. Z-specification

of relational algebra is given in [6].

The last one is the natural direction

for further modeling of relational

model in UML.

REFERENCES

[1] ISO/IEC 13568: 2002 (E) Information Technology. Z Formal Specification

Notation. Syntax, Type System and Semantics, www.iso.org.

[2] Unified Modeling Language, OMG, http://www.uml.org

[3] Dimitrov, V.: Formal Specification of Relational Model of Data in Z-Notation, Proc.

of XXXIX Conf. of UMB, 178-183 (2010)

[4] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. CACM vol.

18, no 6, 377--387 (1970)

[5] Dimitrov, V.: “Relationship” Specified in Z-Notation, Physics of Elementary

Particles and Atomic Nuclei, Letters, Vol. 8, No. 4(167), 655—663 (2011)

[6] Dimitrov, V.: Formal Specification of Relational Model with Relational Algebra

Operations, Proc. of Fifth Int. Conf. ISGT, 25-28 May 2011, Sofia, pp. 57-74.

За контакти:

Проф. д-р Владимир Димитров, Катедра “Компютърна информатика”, Факултет

по математика и информатика, Софийски университет “Св. Климент Охридски”, тел.:

02-8161-594, е-mail: cht@fmi.uni-sofia.bg

Докладът е рецензиран.

