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Abstract: .This paper presents two approaches for planar grid generation. One of them is algebraic 

and it is based on equality of quad areas and the other one is an improved direct optimization method. The 

idea of the paper is to provide a fast algorithm for mesh generation to do a more realistic simulation of mass-

spring models. Results and conclusions are presented at the end of the paper. 
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INTRODUCTION 

Cloth simulation has become a major field of research in computer graphics in the 

last 20 years. Its main applications are computer games, garment design and electronic 

commerce. Most of the mass-spring based approaches [1, 2] require a rectangular 

topology grid to be generated on a cloth piece, so that the physical simulation of the 

masses and springs can run. One of the easiest solutions is to use an algebraic method 

[3], but as shown in the next sections, it does not always produce good results. 

One of the approaches presented in this paper modifies an existing direct 

optimisation method by adding another term to the length functional. The other solution is 

an algebraic and it uses division into relatively equal areas. 

The rest of the paper is organized as follows. The next section reviews previous work 

on grid generation. Section 3 describes the algebraic and direct optimisation approaches. 

Section 4 presents the algebraic and the modified optimisation approach using the 

diagonal term in the functional. Section 5 gives results of the experiments and the last 

section concludes the paper. 

 

PREVIOUS WORK GRID GENERATION 

As above mentioned the fastest and easiest method to implement is the algebraic 

mapping with two dimensional interpolation [3]. However, in many cases it does not 

produce good results and more complex methods were developed that generate smoother 

meshes. One of the best is the elliptic grid generator [4] borrowing ideas from fluid 

dynamics and solving partial differential equations. Its main disadvantage is that non-linear 

systems of many unknowns have to be solved, which can be done only by iterative 

numerical methods. As a result the method is slow. 

Khamayseh and Hamann [5] modified the elliptic system using non-uniform rational 

B-splines (NURBS). In this approach the original geometry is given as analytically defined 

NURBS surfaces, but the method is designated mainly for generating meshes on 3D 

surfaces, not on a plane. 

Castillo and Otto [6, 7] proposed a direct variational optimisation approach. They treat 

the grid generation problem as discrete from the very beginning. Several discrete 

functionals (length, area, orthogonal) are defined and their variation is minimised. This 

produces linear systems, which can be solved much faster than for the elliptic generator. If 

only the length functional is used, then the x and y coordinates are decoupled and two 

independent systems should be solved, one for x and one for y coordinates, which have 

the same matrix. This results in a very fast generation, but minimisation only of length 

variation does not always produce good results. That is why area has to be added too. 

However, x and y coordinates are coupled and the number of unknowns is increased 

twice. 

The main idea of the first approach, proposed in this work, is to improve the length 

functional by adding the length of diagonals and in this way preserve the efficiency of the 

method, while improving its quality at the same time. The second approach provides a 
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mechanism for subdivision of the original figure into quads with almost equal areas that is 

fast and it is based on intersection of possible geometrical locus of points. 

 

ALGEBRAIC AND DIRECT OPTIMISATION METHODS 

The problem of rectangular grid generation is illustrated in Fig. 1. Given a rectangular 

logical domain, on which it is easy to generate a rectangular mesh, we have to find a 

mapping function R(u,v) to the physical domain. The variables u and v are in the interval 

from 0 to 1. The boundary curves R(u,0), R(u,1), R(0,v), R(1,v) can be easily generated 

using an equal length approach. So, the main problem is to find point distribution inside 

area of the physical domain. 

 

Fig. 1. The problem of rectangular topology grid generation 

 

Algebraic interpolation 

The main idea here is to apply a two-dimensional linear interpolation. Equation (1) 

gives the matrix form of the linear interpolant. 
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Direct optimisation 

Castillo and Otto presented a discrete variational grid generation method. They 

define the following length functional: 
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and minimise it by setting the partial derivatives to zero. In their functional they assume 

different weights Lu, Lv for the horizontal and vertical edges of the grid. It is easy to be 

seen that if Lu is bigger than Lv then the vertical lines have greater influence than the 

horizontal ones. The minimisation of (2) leads to equation (3), which is applied to all R(u,v) 

where u is between 1 and umax -1 and v is between 1 and vmax -1. 
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0Lv)*1)]/(LvvR(u,1)-v[R(u,

Lu)*v)]/(Lu1,R(uv)1,-[R(u

Lu)]*2/(LuLv)*[2/(Lv*v)R(u,

=++

−++

−+

  (3) 

 

The result is a system of linear equations with (vmax -2)*(umax -2) unknown variables. If 

Lu=Lv, the system matrix elements M[i, j] can be computed in the following way. All main 

diagonal elements are equal to 4. If i=u*vmax +v and j=i±1 then M[i, j]=-1. If j = i±vmax then 

M[i, j]=-1. 

A well-known method for solving linear equations is the LU decomposition. It is called 

that way, because of L for lower and U for upper triangle matrixes that are used for solving 

the equations. More details about the LU decomposition can be found in [9]. 

Another faster solution is a special case of LU decomposition which is called 

Cholecky decomposition [10]. It is used for square symmetric matrices. The difference 

between LU decomposition is that in case of real number solutions the L and U matrix are 

transposed (Lij=Uji). That speeds up the solution by removing half of the pre-generated 

solution data. 

 

METHODS PROPOSED IN THIS PAPER 

Algebraic method based on equality of inside quads area 

This approach is iterative and it separates physical domain into Vmax number of quad-

strips that have relatively equal areas S/Umax, where S is the total area. It could be 

considered as recursive and after each iteration a new pass of the algorithm is performed 

with 1 iteration less than the previous. Each R(u,v) point is generated as an intersection of 

two lines. The first line is the bisector of the angle R(u-1,v-1), R(u,v-1), R(u+1,v-1). The 

second line is parallel to the line between R(u-1,v-1) and R(u,v-1) and passes through 

point R(u-1,v). The distance between the two parallel lines is equal to 1/Vmax of the 

distance between R(u,0) and R(u,vmax). After all on the current row are generated, then the 

area of the quad-strip formed by the current and previous rows is computed. If the 

difference between that area and S/Umax is greater than a certain threshold (2%-3%), then 

that iteration is started again but the distance between the parallel lines is multiplied by the 

ratio between S/Umax and the last previously computed area. The threshold could be set to 

almost 0% if the algorithm should be more precise, but there is no visual difference for 

threshold less than 2.5%, however the number of iterations is increased. This is illustrated 

in Fig. 2. 

 

 

Fig. 2. Generation of a single point 

If the difference is less than the threshold, then a function is called, which divides the 

currently generated row R(0,v) R(umax,v) into segments with relatively equal lengths. This 

algorithm is used for generation of the contours of the initial grid. This functionality is 

illustrated in Fig. 3. 

Another approach for the generation the row is: firstly the area of the R(u-1,v), R(u,v-

1), R(u,v) is calculated by subtracting the ideal area for each quad S/(umax*vmax) with the 
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area of the triangle R(u-1,v-1), R(u,v-1), R(u-1,v). Then the length of the segment R(u,v-1), 

R(u-1,v) is calculated. The formula for areas of triangles is St=0.5*a.ha=0.5*b.hb =0.5*c.hc. 

So the formula for the height of the segment R(u,v-1) R(u-1,v) looks like this: h=2*St/a 

where St is the area and a is the length of the segment. Finally new line is generated and it 

is parallel to the line R(u,v-1) R(u-1,v) and the distance between the two lines is h. The 

intersection point of this line and the line parallel to R(u-1,v-1) R(u,v-1) used in the above 

approach is R(u,v). The second approach generates grids with evenly distributed quads’ 

areas, but it is slower and that’s why the first one is more appropriate. 

Newly generated quads have relatively equal areas. The ratio of the biggest and the 

smallest area in this polygon is 1.62. After each iteration new row is generated and all of 

the segments R(u-1,v) R(u,v) are equal. 

 

 

 

Fig. 3. Generation of row with algebraic method based on equality on quad areas 

 

Improved length functional 

The direct optimization method has one big disadvantage. Some of the quads (in this 

example they are located around the neck and arms) are thin and long and their area is 

almost equal to 0 despite the good situation and shape of the others. One solution of 

minimization of this problem is to involve the quad diagonals in the equation (3). 

 

0Lu)*LuLv*1)]/(Lvv1,-R(u1)v1,R(u

1)-v1,R(u1)-v1,-[R(u

Lv)*1)]/(LvvR(u,1)-v[R(u,

Lu)*v)]/(Lu1,R(uv)1,-[R(u

Lu)]*LuLv*4/(LvLu)*2/LuLv)*[2/(Lv*v)R(u,

=+++++

+++

−++

−++
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 (4) 

 

Equation (4) makes the grid look more realistic. Benchmark tests show that execution 

times of the original and the optimized methods vary less than 1%. 

 

RESULTS 

The algorithms were implemented in Java 1.6.0_26 under Windows 7. Results are 

shown in Figures 4, 5 and 6. For the tests presented below we assume that the ratio 

between Lu and Lv for the direct optimisation is 4. 
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Fig. 4. Time for execution of 1000 iteration versus grid size. Algebraic algorithms 

 

 

Fig. 5. Algebraic generation: left-linear interpolation, right-based on equality of areas 

 

 

Fig. 6. Direct optimisation: left-original method, right-improved length functional 
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CONCLUSIONS AND FUTURE WORK 

This paper presented two approaches for planar grid generation. The following 

conclusions can be drawn. 

The approach based on discrete functional minimisation generates smooth rows and 

columns but there is huge difference between the areas of the quads. The execution time 

for grids bigger than 50 by 50 knots is very big. One possible optimization is caching of 

decomposition matrices. Once it is been used for generation, the matrix could be kept in 

the memory for further use. Of course, a lot of memory should be allocated for that 

process. One optimization is solving the equations using the Cholesky decomposition 

method. 

The method based on the equal areas is faster if the difference between the smallest 

and biggest quad areas is approximately equal or at least the ratio is smaller than 2. It 

could be tuned and then the ratio will approach 1, but the execution time will become 

almost equal to the first algorithm. The advantage of that solution comes from using of 

geometric locus of points and integration of both x and y coordinates. One disadvantage is 

the rough look of the inner rows and columns. 

A point for future work is implementation of a discrete functional that is based on 

equality of quad areas. The execution time should be kept in mind because these 

approaches have geometrical progression between the number of grid knots and the time 

for generation. 
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