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Abstract: An algorithm for interpretive library search in a database of 
13

C NMR spectra is tested with 

a newly composed spectral library. Two hundred and ten spectra of compounds isolated from plants are 

searched in this library of 1000 spectra of natural compounds. A use is made of a specially designed rank 

that sorts the substructures according to their reliability. A kind of reliability function is derived from the rank 

values of the retrieved substructures. The obtained results are highly informative and can be used in the 

process of structure elucidation.  
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INTRODUCTION 

Computer searching in spectral libraries of fully assigned 
13

C NMR spectra of 

substructures or full structures is an indispensable part of the structure elucidation [1-2]. 

The library search in spectral databases has two main goals: identification of the unknown 

compound if its spectrum is among the reference spectra (the so called identity search), or 

obtaining a list of compounds whose spectra are most similar to that of the unknown 

(similarity search). As the spectrum reflects in great extend the structure of a compound, 

the result hitlist can be used for deriving some conclusions for the unknown’s structure, 

and this is usually done through manual inspection of the hit structures by the chemist or 

with the aid of some computer algorithms as that of maximum common substructure [3]. 

Particularly, the 
13

C NMR spectrum reflects the nature of the skeletal backbone of the 

organic compound, information not as easily derivable by other spectroscopic techniques. 

When the library does not contain structures similar enough to the unknown one (i.e. 

library spectra are less similar to the unknown one) the structure inferences derived from 

the hitlist can be less informative or even incorrect. In this case, the approach of 

interpretive library search can be applied more successfully [4-5]. This approach derives 

from the proposition that if an unknown and a reference spectrum share a subspectrum in 

common, the substructure assigned to the reference subspectrum is also present in the 

unknown. In our approach, each such substructure is a connected part of the reference 

structure, and each carbon atom in the substructure has at least one assigned signal of 

the unknown. The practice shows that some of substructures retrieved by the interpretive 

library search are incorrect (i.e. not present in the unknown’s structure), that is why a 

preliminary derived reliability function is needed to evaluate the substructure correctness. 

As a final result, the obtained plausible substructures are ordered by their decreasing 

prediction accuracy (reliability), and part of them can be selected for use in the structure 

generation process [1]. 

Such multivariate function is obtained for a library of 38 225 
13

C NMR spectra of 

organic and natural compounds [5] and it has been proved that the interpretive search 

produces correct and highly informative results [5-6]. The function uses various 

parameters characterizing each of the inferred substructures [5] but some of the variables 

depend on the library size. Because of that, when searching in another library, the 

estimated prediction accuracy does not differentiate between correct and incorrect 

substructures. Obviously, that hinders the application of the method with various spectral 

libraries. That fact is shown in the present paper in which a newly composed spectral 

library of 1000 spectra of plant compounds is used. To overcome the problem, the 

multivariate function is replaced by a use of a specially designed rank that sorts the 

substructures according to their reliability. The rank uses some of the substructure 

variables described in [5].  
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METHODS 

The method for interpretative library search is implemented into Windows-based 

user-friendly program, called InferCNMR [5]. The program input consists of chemical shift 

and multiplicity of each signal in the 
13

C-NMR spectrum of the unknown compound, as well 

as the molecular formula of the organic compound. The retrieved substructures are 

presented embedded into the reference structures and, in this way, are explicitly defined in 

terms of atom type, hydrogen multiplicity and bond type. The substructures are sorted 

according to their accuracy (calculated by a multivariate function [5]) or by their rank. 

Additionally, a reliability function is derived from the rank values of the retrieved 

substructures. The parameters which restrict the search algorithm are the tolerance of 

signal matching (Tol) in ppm and minimum number of the carbon atoms in the inferred 

(retrieved) substructures (m.n.c.); for this study the former is set between 0.0 – 2.0 ppm 

with a step of 0.1 ppm and the latter to 6.  

In this study, it is used a newly composed spectral library of 1000 fully assigned 
13

C 

NMR spectra of plant compounds. The structures of the compounds are represented as 

2D connectivity tables with x and y atom coordinates, and each carbon atom of the 

reference compound has a single chemical shift assigned to it. The spectra are taken from 

Phytochemistry journal (years 2002-2006, volumes 61-67). The library header information 

includes the compound names, used solvents and bibliographic source data. The library is 

named PHYCHEM. 

Two sets, the so-called learning set (LS) and test set (TS), each of 100 fully-

assigned 
13

C NMR spectra, are composed. The spectra are taken from Phytochemistry 

journal (years 2001-2002, volumes 58-60) and the corresponding compounds are also 

isolated from plants. As we started a collaboration with one of the coauthors (P.B.) who 

has a practical experience for isolation of plant compounds and their structure elucidation, 

we additionally composed a small validation set of spectra of 10 compounds isolated by 

P.B. [7-11]. These compounds are well representative to check the efficiency of the 

interpretive search and it has been proved previously [6] that the interpretive search 

together with multivariate reliability function produces very reliable and highly informative 

results for them.  

All these 210 spectra in the learning, test and validation sets are not contained in the 

PHYCHEM library. They are searched in it with the algorithm described earlier [5]. 

 

RESULTS AND DISCUSSION 

The 100 spectra from learning set produce hitlists of size ranging from 3 to 858 

substructures (151 in average). The hitlist size for 100 test set spectra varies from 8 to 800 

substructures (134 in average).  

To estimate the performance of the reliability function, the substructures from the 

result hitlists of the learning and test sets are separately gathered into two lists. The latter 

are composed of 15 136 and 13 424 substructures, respectively, and the correct 

substructures in them are 47.5% and 46.1%. All the substructures are processed by the 

previously developed reliability function and the two lists are sorted separately according 

to the substructure accuracy. Then, estimates are calculated for the accuracy threshold 

values of 90%, 95 and 99%. The corresponding estimate is calculated as the number of 

correct substructures as percent of all substructures that have an accuracy higher than a 

given threshold value. The estimates are listed in Table 1 and as can be seen they are far 

lower than the corresponding threshold values. This means that the reliability function 

works poorly. This is in fact not so surprising because the function uses variables 

(parameters) that depend on the library size, and the present reliability function was 

assembled with the aid of library search in 38 225 spectra [5].  
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Table 1. Estimation of substructure accuracy. 

Set
a

 AT = 90 % 
b

 AT = 95 % AT = 99 % 

 n.c.s.
d

 n.i.s.
 d

 AE, %
c

n.c.s. n.i.s. AE, % n.c.s. n.i.s. AE, %

LS 4 470 3 168 58.5 1 966 827 70.4 669 231 74.3 

TS 3 750 2 792 57.3 1 592 697 69.6 544 222 71.0 

a) LS = learning set; TS = test set. b) AT = threshold accuracy. c) AE = estimated 

accuracy. d) n.c.s. and n.i.s. = number of correct and incorrect substructures, 

correspondingly. 

In order to solve the above mentioned problem, a new function can be built, but this 

requires comprehensive statistics and is a very time- and resource-consuming procedure. 

On the other side, the authors intend to extend the library with additional spectra: up to 

now, other 500 spectra are gathered from the same journal. That is why the function must 

be carefully prepared and it has to use only substructure parameters (original or derived 

from them) that are independent of the library size.  

The alternative of a reliability function is a usage of some sort of rank that is 

composed from substructure parameters. The rank just sorts the correct substructures in 

the beginning of the list and is not related to any output accuracy value that depends on 

the portability of the reliability function. The composition of a rank is faster, does not need 

any comprehensive statistics, and its usefulness can be proved just with the aid of small 

representative sets. Additionally, a sort of reliability function can be derived very fast from 

the rank value of all substructures in the sorted list. 

 All substructure parameters from Tables 1 and 2 in [5], 48 in number, are screened 

for their discriminative power between the correct and incorrect substructures in the 

learning set results. As the most discriminating are found the four parameters listed in 

Table 2. (Keep in mind that some of the parameter short names are changed when 

compared with the previous paper [5].) Additionally, the tolerance (Tol) used by signal 

match is a very good parameter because more correct substructures are generated by 

smaller tolerance. It has a strong correlation with the parameter sRMSD and that is why 

only one of them can be used in the rank. 

Table 2. Substructure parameters used in the rank. 

sRS: the number of all substructures retrieved in a search at a given tolerance. 

sSO: the number of occurrences of a particular substructure produced in a search 

at a given tolerance in all sRS substructures. 

sLO: the number of reference compounds in the library containing the particular 

substructure produced by a search at a given tolerance. 

sFV: number of free valences in the substructure 

sRMSD: minimum root mean standard deviation of substructure matched signals 

Several combinations of parameters from Table 2 together with other parameters are 

checked and it is found as the most effective for LS spectra the rank given by Eq. 1 

)2)(1(* Tolf

sFV

sNA

LibSz

sSOsLO

fRank −−+

⋅

= ,   (Eq. 1) 

 

where LibSz is the size of the spectral library (1000 in our case), sNA is the number of 

atoms in the substructure, and f is a user-adjustable factor (weight) ranging between 0.0 

and 1.0. 

 The parameters are placed in the numerator or denominator, or with plus or minus 

sign, depending on their positive or negative discrimination: the higher rank value the more 

correct is estimated the substructure. The parameter sNA is placed in the numerator with 

the aim of “pushing” larger substructures to the top of the sorted list; in [5] it has been used 

the reverse ratio, sFV/ sNA, as a reliability function variable.  
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A new reliability function is built by the use of rank values of all substructures in the 

learning set. The procedure is the same as those described in [5] with the only difference 

that the rank value replaces the artificial neural network’s output value. In the same way as 

in [5] the recalls at accuracy of 90%, 95% and 99% (R90, R95 and R99) are calculated. The 

factor f in Eq. 1 is varied between 0.0 and 1.0 in ten steps and a maximum is searched of 

the three mentioned recalls. The curves f vs. R90, f vs. R95 and f vs. R99 look very similar in 

both sets, LS and TS, and all six have maximum at f = 0.6. The corresponding calculated 

recalls for both sets are very close and high; for LS: R90 = 45.2%, R95 = 37.5% and R99 = 

25.6%; for TS: R90 = 41.8%, R95 = 34.0% and R99 = 25.3%. 

The rank is applied to the LS and TS spectra: in 95 out of 100 hitlists in LS sorted by 

the rank the first ranked substructure is correct; in TS there are 92 out of 100 sorted hitlists 

with first substructure correct. 
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Figure 1. Validation set results which are correct. 

The ten spectra from validation set predicted from 37 to 680 substructures (194 in 

average). In four of the cases the first substructure is incorrect. The six correct first 

substructures are given together with query structures in Figure 1; the former are 

represented embedded into the corresponding reference compound structure. 

 

CONCLUSIONS 

As a whole, these results turned out to be very satisfactory for test set compounds; 

the very poor performance for the ten validation compounds can not be explained and this 

pose a great challenge to the practical application of the method to the compounds similar 

to them. One possible explanation is that the validation set is a quite small one for the 

statistics to be reliable enough.  
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