New results on the classification of binary self-dual [52, 26, 10] codes with an automorphism of odd prime order¹

Nikolay Yankov, Radka Russeva

Abstract: The paper presents an important step toward the complete classification of all optimal binary self-dual codes of length 52 that possess an automorphism of odd prime order. Using a method for constructing and classifying binary self-dual codes with an automorphism of odd prime order p we give full classification of all [52, 26, 10] binary self-dual codes with an automorphism of type 3-(16,4) and a certain generator matrix for the fixed subcode. Also, we construct 178727 optimal codes with weight enumerator $W_{s_2,1}(y)$. All but one of the constructed codes are new. For all constructed codes we give the order of its automorphism group.

Key words: automorphism; classification; code; self-dual code;

INTRODUCTION

A linear [n,k] code C is a k-dimensional subspace of the vector space F_q^n , where F_q is the finite field of q elements. The elements of C are called *codewords* and the (Hamming) weight of a codeword is the number of its nonzero coordinate positions. The minimum weight d of C is the smallest weight among all nonzero code words of C, and C is called a [n,k,d] code.

A matrix which rows form a basis of *C* is called a generator matrix of this code. The weight enumerator W(y) of a code *C* is given by $W(y) = \sum_{i=0}^{n} A_i y^i$ where A_i , is the number of codewords of weight *i* in *C*. Let $(u,v): F_q^n \times F_q^n \to F_q$ be an inner product in the linear space F_q^n . The dual code of *C* is $C^{\perp} = \{u \in F_q^n : (u,v) = 0 \text{ for all } v \in C\}$. The dual code C^{\perp} is a linear [n, n-k] code. We call the code *C* self-orthogonal if $C \subseteq C^{\perp}$. If $C = C^{\perp}$ then the code *C* is termed self-dual.

A self-dual code *C* is doubly-even if all codewords of *C* have a weight divisible by four, and singly-even if there is at least one codeword of weight congruent 2 modulo 4. Self-dual doubly-even codes exist only when n is divisible by eight. The codes with the largest possible minimum weight among all self-dual codes of a given length are named optimal self-dual codes. For singly-even self-dual codes, Conway and Sloane [1] provided new upper bounds for the minimum weight, and gave a list of the possible weight enumerators of singly-even self-dual codes meeting the bounds for lengths up to 64 and for length 72.

Two binary codes are equivalent if one can be obtained from the other by a permutation of coordinates. The permutation $\sigma \in S_n$ is an automorphism of *C*, if $C = \sigma(C)$. The set of all automorphisms of *C* forms a group, called the automorphism group Aut(C) of *C*.

CONSTRUCTION METHOD

Huffman and Yorgov (cf. [2]-[4]) developed a method for constructing binary self-dual codes with an automorphism of odd prime order.

Let *C* be a binary self-dual code of length *n* and σ be an automorphism of *C* of order *p* for an odd prime *p*. Without loss of generality we can assume that

$$\sigma = \Omega_1 \cdots \Omega_c \Omega_{c+1} \cdots \Omega_{c+t}, \tag{1}$$

¹ This paper is supported by Shumen University under Grant RD-08-241/12.03.2013

where $\Omega_1, ..., \Omega_c$ are the cycles of length *p* and $\Omega_{c+1}, ..., \Omega_{c+t}$ are the fixed points. We shortly say that σ is of type p - (c, f). Then we have cp + f = n.

Let $F_{\sigma}(C) = \{v \in C : v\sigma = v\}$ and $E_{\sigma}(C) = \{v \in C : wt(v \mid \Omega_i) \equiv 0 \pmod{2}\}, i = 1, 2, ..., c$, where $v \mid \Omega_i$ is the restriction of the vector v on Ω_i . We have the following lemma [2].

Lemma 1 $C = F_{\sigma}(C) \oplus E_{\sigma}(C)$, where the symbol \oplus means a direct sum of codes, dim $F_{\sigma}(C) = (p-1)c/2$. When *C* is a self-dual code and 2 is a primitive root modulo *p*, then *c* is even.

Obviously $v \in F_{\sigma}(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi : F_{\sigma}(C) \to F_2^{c+f}$ be the projection map where if $v \in F_{\sigma}(C)$, $(v\pi)_i = v_i$ for some $j \in \Omega_i$, i = 1, 2, ..., c + f.

Every vector of length *p* can be represented with a polynomial in the factor ring $F_2[x]/(x^p-1)$, namely $(a_0, a_1, ..., a_{p-1}) \mapsto a_0 + a_1x + \cdots + a_{p-1}x^{p-1}$. We call the weight of a polynomial the number of its nonzero coefficients. Let *P* be the set of all even-weight polynomials in $F_2[x]/(x^p-1)$. Then *P* is a cyclic code of length *p* with generator polynomial x-1.

Lemma 2 [2] Let *p* be an odd prime such that $1 + x + x^2 + \dots + x^{p-1}$ is irreducible over F_2 . Then *P* is a field with identity $x + x^2 + \dots + x^{p-1}$.

Denote by $E_{\sigma}(C)^*$ the code $E_{\sigma}(C)$ with the last *f* coordinates deleted. Consider for $v \in E_{\sigma}(C)$ each $v \mid \Omega_i = (a_0, a_1, \dots, a_{n-1})$ as a polynomial $\phi(v \mid \Omega_i)$ in the following way

$$\phi(v \mid \Omega_i) = a_0 + a_1 x + \dots + a_{n-1} x^{p-1}, \text{ for } 1 \le i \le c.$$
(2)

This way we define the map $\phi: E_{\sigma}(C)^* \to P^c$.

Theorem 1 [4] Assume that the polynomial $1 + x + x^2 + \dots + x^{p-1}$ is irreducible over F_2 . A code *C*, possessing an automorphism (1), is self-dual if and only if the following conditions hold:

i) $C_{\pi} = \pi(F_{\sigma}(C))$ is a $[c+f,\frac{c+f}{2}]$ binary self-dual code;

ii) $C_{\phi} = \phi(E_{\sigma}(C)^{*})$ is a self-dual [c, c/2] code over the field P under the inner product

 $(u,v) = \sum_{i=0}^{c} u_i v_i^{2^{(p-1)/2}}$, where $u = (u_1, \dots, u_c)$, $v = (v_1, \dots, v_c) \in P^c$.

Theorem 2 [5] Let the permutation σ , defined in (1), be an automorphism of the selfdual codes *C* and *C'*. A sufficient condition for equivalence of *C* and *C'* is that *C'* can be obtained from *C* by application of a product of some of the following transformations:

a) a substitution $x \to x^t$ for t = 1, ..., p-1 in C_{a} ;

b) any multiplication of the *j*-th coordinate of C_{ϕ} by x^{t_j} , where t_j is an integer, $1 \le t_i \le p-1, j = 1, ..., c$;

c) any permutation of the first c cycles of C;

d) any permutation of the last *f* coordinates of *C*.

NEW OPTIMALBINARY SELF-DUAL CODES OF LENGTH 52

In this section we apply method described in Section 2 and we classify all optimal binary [52, 26, 10] self-dual codes with an automorphism of type 3-(16, 4) and a particular generator matrix for the subcode C_{π} .

The weight enumerators of the extremal self-dual codes of length 52 are known [6]:

$$W_{52,1}(y) = 1 + 250y^{10} + 7980y^{12} + 423800y^{14} + \cdots$$

and

$$W_{52,2}(y) = 1 + (442 - 16\beta)y^{10} + (6188 + 64\beta)y^{12} + 53040y^{14} + \cdots$$

for $0 \le \beta \le 12$. Codes exist with weight enumerators for $W_{52,1}$ and $W_{52,2}$ for $\beta = 1, ..., 12$ [6].

Let *C* be a binary self-dual code of length n = 52 with an automorphism σ of order p = 3 with exactly 16 independent 3-cycles and 4 fixed points in its factorization. We may assume that

$$\sigma = (1,2,3)(4,5,6)\dots(46,47,48).$$
 (3)

Then C_{ϕ} is a hermitian [16,8, \geq 5] code over the field F_4 of four elements. There are exactly four inequivalent such codes $2f_8$, $1_6 + 2f_5$, 1_{16} , $4f_4$ [7] with generator matrices

The code C_{π} is a [16, 8] binary self-dual code with minimum distance at least 4. The following Lemma was proved in [6]:

Lemma 2 Let *C* be a binary self-dual code of length 52 with an automorphism σ from (3). Up to a permutation, there are exactly three up to equivalence possible generator matrices B_{1} , B_{2} and B_{3} for the subcode C_{π} as follows:

In this paper we consider the case gen $C_{\pi} = B_3$. For a permutation $\tau \in S_{16}$ we denote by B_3^{τ} the matrix derived from B_3 after permuting its columns by τ . Denote by C_i^{τ} , i = 1,...,4, the [52, 26] binary self-dual code with a generator matrix in the form:

$$\mathbf{G}_{i}^{r} = \begin{pmatrix} \pi^{-1}(\mathbf{B}_{3}^{r}) \\ \varphi^{-1}(\mathbf{H}_{i}) & \mathbf{O} \end{pmatrix},$$
(4)

where O is a 16×4 all-zeros matrix.

Let *A* be the subgroup of the automorphism group of the [16, 8] binary code generated by the matrix B_3 consisting of the automorphisms of this code that permute the first 16 coordinates (corresponding to the 3-cycle coordinates) among themselves and permute the last 4 coordinates (corresponding to the fixed point coordinates) among themselves. Let *G'* be the subgroup of the symmetric group S_{16} consisting of the permutations in *A* restricted to the first 16 coordinates, ignoring the action on the fixed points.

Using Iliya Bouyukliev's application *Q*-extensions [8] we computed that $G' = \langle (3,4)(5,6), (3,5)(4,6), (13,16)(14,15), (1,15,14,7,16,13)(2,8)(3,9)(4,10)(5,12)(6,11) \rangle$ is a group of cardinality 768.

The following lemma gives sufficient conditions for the equivalence of two codes $C_i^{r_1}$ and $C_i^{r_2}$, i = 1, ..., 4.

Lemma 3 If τ_1 and τ_2 belong to one and the same right coset of G' in S_{16} , then the codes $C_3^{r_1}$ and $C_3^{r_2}$ are equivalent.

Thus we only need the permutations from the set T – a right transversal of S_{16} with respect to G'. The downside is that the size of T is huge 27243216000 thus the computations are time consuming. Since we only compute codes constructed from the same subcode C_{π} with generator matrix B_3 all optimal self-dual [52, 26, 10] codes will have the same weight distribution $W_{52,1}(y)$ (see [6]). We conclude a summary of the orders of the automorphism group for each of the four cases displayed in Table 1.

case	Aut(C) = 3	Aut(C) = 6	Aut(C) = 150	Total codes
$C_{\varphi} = H_1$	16675	586		17261
$C_{\varphi} = H_2$	33321	138		33459
$C_{\varphi} = H_3$	4241	177	1	4419
$C_{\varphi} = H_4$	122654	934		123588

 Table 1. Orders of the automorphism groups of the constructed codes

Theorem 3 Let *C* be a binary self-dual code of length 52 with an automorphism σ from (3) and $C_{\pi} = B_3$. Up to equivalence there are exactly 178727 such codes all with weight enumerator $W_{524}(y)$.

Remark: One of the constructed [52, 26, 10] codes has an automorphism group of order 150 = 2.3.5 and is equivalent to a code from [9]. Thus all the rest 178726 codes are new.

REFERENCES

[1] Conway J.H., Sloane N.J.A. A new upper bound on the minimal distance of selfdual codes. IEEE Trans. Inform. Theory, vol. 36, pp. 1319–1333, 1990.

[2] Huffman W.C. Automorphisms of codes with application to extremal doubly-even codes of length 48. IEEE Trans. Inform. Theory, vol. 28, pp. 511-521, 1982.

[3] Yorgov V.Y. Binary self-dual codes with an automorphism of odd order. Probl. Inform. Transm. 4, pp. 13-24 (in Russian), 1983.

[4] Yorgov V.Y. A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inform. Theory, vol. 33, pp. 77-82, 1987.

[5] Yorgov V.Y. The extremal codes of length 42 with automorphism of order 7. Discr. Math., vol 19, pp. 201-213, 1998.

[6] Yankov N., New optimal [52, 26, 10] self-dual codes. Designs, Codes and Cryptography, vol. 69 (2), pp. 151-159, 2013.

[7] Conway, J. H., V. Pless, Sloane, N. J. A. Self-dual codes over GF(3) and GF(4) of length not exceeding 16. IEEE Transactions on Information Theory, 25(3), 312–322, 1979.

[8] Bouyukliev, I. About the code equivalence, Advances in Coding Theory and Cryptography. Series on coding theory and cryptology, vol. 3. World Scientific Publishing, 126--151, 2007.

[9] Yankov, N., M.H. Lee, New binary self-dual codes of lengths 50-60. to appear in Designs, Codes and Cryptography, 2013.

About the authors:

Assoc.Prof. Nikolay Yankov, PhD, Faculty of Mathematics and Informatics, Shumen University, E-mail: <u>n.yankov@shu-bg.net</u>

Assoc.Prof. Radka Russeva, PhD, Faculty of Mathematics and Informatics, Shumen University, E-mail: <u>russeva@fmi.shu-bg.net</u>

The paper is reviewed.