New results on the classification of binary self-dual [52, 26, 10] codes with an automorphism of odd prime order ${ }^{1}$

Nikolay Yankov, Radka Russeva

Abstract

The paper presents an important step toward the complete classification of all optimal binary self-dual codes of length 52 that possess an automorphism of odd prime order. Using a method for constructing and classifying binary self-dual codes with an automorphism of odd prime order p we give full classification of all [52, 26, 10] binary self-dual codes with an authomorphism of type 3-(16,4) and a certain generator matrix for the fixed subcode. Also, we construct 178727 optimal codes with weight enumerator $W_{52,1}(y)$. All but one of the constructed codes are new. For all constructed codes we give the order of its automorphism group.

Key words: automorphism; classification; code; self-dual code;

INTRODUCTION

A linear $[n, k]$ code C is a k-dimensional subspace of the vector space F_{q}^{n}, where F_{q} is the finite field of q elements. The elements of C are called codewords and the (Hamming) weight of a codeword is the number of its nonzero coordinate positions. The minimum weight d of C is the smallest weight among all nonzero code words of C, and C is called a $[n, k, d]$ code.

A matrix which rows form a basis of C is called a generator matrix of this code. The weight enumerator $W(y)$ of a code C is given by $W(y)=\sum_{i=0}^{n} A_{i} y^{i}$ where A_{i}, is the number of codewords of weight i in C. Let $(u, v): F_{q}^{n} \times F_{q}^{n} \rightarrow F_{q}$ be an inner product in the linear space F_{q}^{n}. The dual code of C is $C^{\perp}=\left\{u \in F_{q}^{n}:(u, v)=0\right.$ for all $\left.v \in C\right\}$. The dual code C^{\perp} is a linear $\left[n, n-k\right.$] code. We call the code C self-orthogonal if $C \subseteq C^{\perp}$. If $C=C^{\perp}$ then the code C is termed self-dual.

A self-dual code C is doubly-even if all codewords of C have a weight divisible by four, and singly-even if there is at least one codeword of weight congruent 2 modulo 4. Self-dual doubly-even codes exist only when n is divisible by eight. The codes with the largest possible minimum weight among all self-dual codes of a given length are named optimal self-dual codes. For singly-even self-dual codes, Conway and Sloane [1] provided new upper bounds for the minimum weight, and gave a list of the possible weight enumerators of singly-even self-dual codes meeting the bounds for lengths up to 64 and for length 72.

Two binary codes are equivalent if one can be obtained from the other by a permutation of coordinates. The permutation $\sigma \in S_{n}$ is an automorphism of C, if $C=\sigma(C)$. The set of all automorphisms of C forms a group, called the automorphism group $\operatorname{Aut}(C)$ of C.

CONSTRUCTION METHOD

Huffman and Yorgov (cf. [2]-[4]) developed a method for constructing binary self-dual codes with an automorphism of odd prime order.

Let C be a binary self-dual code of length n and σ be an automorphism of C of order p for an odd prime p. Without loss of generality we can assume that

$$
\begin{equation*}
\sigma=\Omega_{1} \cdots \Omega_{c} \Omega_{c+1} \cdots \Omega_{c+t} \tag{1}
\end{equation*}
$$

[^0]where $\Omega_{1}, \ldots, \Omega_{c}$ are the cycles of length p and $\Omega_{c+1}, \ldots, \Omega_{c+t}$ are the fixed points. We shortly say that σ is of type $p-(c, f)$. Then we have $c p+f=n$.

Let $F_{\sigma}(C)=\{v \in C: v \sigma=v\}$ and $E_{\sigma}(C)=\left\{v \in C: w t\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2)\right\}, \quad i=1,2, \ldots, c$, where $v \mid \Omega_{i}$ is the restriction of the vector v on Ω_{i}. We have the following lemma [2].

Lemma $1 C=F_{\sigma}(C) \oplus E_{\sigma}(C)$, where the symbol \oplus means a direct sum of codes, $\operatorname{dim} F_{\sigma}(C)=(p-1) c / 2$. When C is a self-dual code and 2 is a primitive root modulo p, then c is even.

Obviously $v \in F_{\sigma}(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi: F_{\sigma}(C) \rightarrow F_{2}^{c+f}$ be the projection map where if $v \in F_{\sigma}(C),(v \pi)_{i}=v_{j}$ for some $j \in \Omega_{i}, i=1,2, \ldots, c+f$.

Every vector of length p can be represented with a polynomial in the factor ring $F_{2}[x] /\left(x^{p}-1\right)$, namely $\left(a_{0}, a_{1}, \ldots, a_{p-1}\right) \mapsto a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1}$. We call the weight of a polynomial the number of its nonzero coefficients. Let P be the set of all even-weight polynomials in $F_{2}[x] /\left(x^{p}-1\right)$. Then P is a cyclic code of length p with generator polynomial $x-1$.

Lemma 2 [2] Let p be an odd prime such that $1+x+x^{2}+\cdots+x^{p-1}$ is irreducible over F_{2}. Then P is a field with identity $x+x^{2}+\cdots+x^{p-1}$.

Denote by $E_{\sigma}(C)^{*}$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. Consider for $v \in E_{\sigma}(C)$ each $v \mid \Omega_{i}=\left(a_{0}, a_{1}, \ldots, a_{p-1}\right)$ as a polynomial $\phi\left(v \mid \Omega_{i}\right)$ in the following way

$$
\begin{equation*}
\phi\left(v \mid \Omega_{i}\right)=a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1}, \text { for } 1 \leq i \leq c . \tag{2}
\end{equation*}
$$

This way we define the map $\phi: E_{\sigma}(C)^{*} \rightarrow P^{c}$.
Theorem 1 [4] Assume that the polynomial $1+x+x^{2}+\cdots+x^{p-1}$ is irreducible over F_{2}. A code C, possessing an automorphism (1), is self-dual if and only if the following conditions hold:
i) $C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ is a $\left[c+f, \frac{c+f}{2}\right]$ binary self-dual code;
ii) $C_{\phi}=\phi\left(E_{\sigma}(C)^{*}\right)$ is a self-dual [$\left.c, c / 2\right]$ code over the field P under the inner product $(u, v)=\sum_{i=0}^{c} u_{i} v_{i}^{\left(\rho^{(\rho-1) / 2}\right.}$, where $u=\left(u_{1}, \ldots, u_{c}\right), v=\left(v_{1}, \ldots, v_{c}\right) \in P^{c}$.

Theorem 2 [5] Let the permutation σ, defined in (1), be an automorphism of the selfdual codes C and C^{\prime}. A sufficient condition for equivalence of C and C^{\prime} is that C^{\prime} can be obtained from C by application of a product of some of the following transformations:
a) a substitution $x \rightarrow x^{t}$ for $t=1, \ldots, p-1$ in C_{ϕ};
b) any multiplication of the j-th coordinate of C_{ϕ} by $x^{t_{j}}$, where t_{j} is an integer, $1 \leq t_{j} \leq p-1, j=1, \ldots, c$;
c) any permutation of the first c cycles of C;
d) any permutation of the last f coordinates of C.

NEW OPTIMALBINARY SELF-DUAL CODES OF LENGTH 52

In this section we apply method described in Section 2 and we classify all optimal binary [52, 26, 10] self-dual codes with an automorphism of type 3-(16, 4) and a particular generator matrix for the subcode C_{π}.

The weight enumerators of the extremal self-dual codes of length 52 are known [6]:

$$
W_{52,1}(y)=1+250 y^{10}+7980 y^{12}+423800 y^{14}+\cdots
$$

and

$$
W_{52,2}(y)=1+(442-16 \beta) y^{10}+(6188+64 \beta) y^{12}+53040 y^{14}+\cdots
$$

for $0 \leq \beta \leq 12$. Codes exist with weight enumerators for $W_{52,1}$ and $W_{52,2}$ for $\beta=1, \ldots, 12$ [6].

Let C be a binary self-dual code of length $n=52$ with an automorphism σ of order $p=3$ with exactly 16 independent 3 -cycles and 4 fixed points in its factorization. We may assume that

$$
\begin{equation*}
\sigma=(1,2,3)(4,5,6) \ldots(46,47,48) \tag{3}
\end{equation*}
$$

Then C_{φ} is a hermitian $[16,8, \geq 5]$ code over the field F_{4} of four elements. There are exactly four inequivalent such codes $2 f_{8}, 1_{6}+2 f_{5}, 1_{16}, 4 f_{4}$ [7] with generator matrices

$$
H_{1}=\left(\begin{array}{c}
0 \\
E_{8} 111111 \\
101 \omega \bar{\omega} \bar{\omega} \omega 1 \\
1101 \omega \bar{\omega} \bar{\omega} \omega \\
1 \omega 101 \omega \bar{\omega} \bar{\omega} \\
1 \bar{\omega} \omega 101 \omega \bar{\omega} \\
1 \bar{\omega} \bar{\omega} \omega 101 \omega \\
1 \omega \bar{\omega} \bar{\omega} \omega 101 \\
11 \omega \bar{\omega} \bar{\omega} \omega 10
\end{array}\right), H_{2}=\left(\begin{array}{c}
1100000 \omega 00 \omega 00 \bar{\omega} \bar{\omega} 0 \\
101000 \omega 0 \omega 00000 \bar{\omega} \bar{\omega} \\
1001000 \omega 0 \omega 0 \bar{\omega} 000 \bar{\omega} \\
10001000 \omega 0 \omega \bar{\omega} \bar{\omega} 000 \\
100001 \omega 00 \omega 00 \bar{\omega} \bar{\omega} 00 \\
00 \bar{\omega} 00 \bar{\omega} 0 \omega 0 \bar{\omega} 000 \bar{\omega} 0 \omega \\
0 \bar{\omega} 0 \bar{\omega} 0000 \omega 0 \bar{\omega} \omega 00 \bar{\omega} 0 \\
0000001 \omega 00 \omega 1 \omega 00 \omega
\end{array}\right),
$$

$$
H_{3}=\left(\begin{array}{l}
1100000 \omega \bar{\omega} \omega 00000 \bar{\omega} \\
10100000 \omega \bar{\omega} \omega \bar{\omega} 0000 \\
100100 \omega 00 \omega \bar{\omega} 0 \bar{\omega} 000 \\
100010 \bar{\omega} \omega 00 \omega 00 \bar{\omega} 00 \\
100001 \omega \bar{\omega} \omega 00000 \bar{\omega} 0 \\
010 \bar{\omega} 0 \omega 1 \bar{\omega} 0000000 \omega \\
0 \omega 10 \bar{\omega} 001 \bar{\omega} 00 \omega 0000 \\
00 \omega 10 \bar{\omega} 001 \bar{\omega} 00 \omega 000
\end{array}\right) \text { and } H_{4}=\left(\begin{array}{l}
01111111 \\
1000 \omega \omega \bar{\omega} \bar{\omega} \\
111 \bar{\omega} 000 \bar{\omega} \\
11 \bar{\omega} 1 \bar{\omega} \bar{\omega} 0 \bar{\omega} \\
1 \bar{\omega} 011 \bar{\omega} 00 \\
1 \bar{\omega} 0 \omega 1 \omega 1 \bar{\omega} \\
1 \bar{\omega} 1 \bar{\omega} \bar{\omega} 0 \bar{\omega} 1 \\
1 \bar{\omega} \bar{\omega} \omega \omega 011
\end{array}\right) \text {, respectively. }
$$

The code C_{π} is a $[16,8]$ binary self-dual code with minimum distance at least 4 . The following Lemma was proved in [6]:

Lemma 2 Let C be a binary self-dual code of length 52 with an automorphism σ from (3). Up to a permutation, there are exactly three up to equivalence possible generator matrices B_{1}, B_{2} and B_{3} for the subcode C_{π} as follows:
$B_{1}=\left(\begin{array}{l}11110000000000000000 \\ 00001110000000001000 \\ 00000001110000000100 \\ 00000000001110000010 \\ 00000000000001110001 \\ 00000001100101100010 \\ 11000000001100100001 \\ 01011100000001100000 \\ 11000101100000001000 \\ 00001100101100000100\end{array}\right), B_{2}=\left(\begin{array}{l}11110000000000000000 \\ 00111100000000000000 \\ 00000011110000000000 \\ 00000000111000001000 \\ 00000000000111100000 \\ 00000000000001110100 \\ 10101010101101010010 \\ 10100110100101001101 \\ 10101000001101001100 \\ 00001110100101011000\end{array}\right), B_{3}=\left(\begin{array}{l}11110000000000000000 \\ 00111000000000001000 \\ 00000111100000000000 \\ 00000001110000000100 \\ 00000000001111000000 \\ 00000000000011100010 \\ 10101101011010110000 \\ 10100101001010001111 \\ 10101000011010000110 \\ 00001101001010101100\end{array}\right)$.

In this paper we consider the case gen $C_{\pi}=B_{3}$. For a permutation $\tau \in S_{16}$ we denote by B_{3}^{τ} the matrix derived from B_{3} after permuting its columns by τ. Denote by C_{i}^{τ}, $i=1, \ldots, 4$, the $[52,26]$ binary self-dual code with a generator matrix in the form:

$$
\begin{equation*}
G_{i}^{\tau}=\binom{\pi^{-1}\left(B_{3}^{\tau}\right)}{\varphi^{-1}\left(H_{i}\right)}, \tag{4}
\end{equation*}
$$

where O is a 16×4 all-zeros matrix.
Let A be the subgroup of the automorphism group of the [16, 8] binary code generated by the matrix B_{3} consisting of the automorphisms of this code that permute the first 16 coordinates (corresponding to the 3 -cycle coordinates) among themselves and permute the last 4 coordinates (corresponding to the fixed point coordinates) among themselves. Let G^{\prime} be the subgroup of the symmetric group S_{16} consisting of the permutations in A restricted to the first 16 coordinates, ignoring the action on the fixed points.

Using Iliya Bouyukliev's application Q-extensions [8] we computed that $G^{\prime}=\langle(3,4)(5,6),(3,5)(4,6),(13,16)(14,15),(1,15,14,7,16,13)(2,8)(3,9)(4,10)(5,12)(6,11)\rangle$ is a group of cardinality 768 .

The following lemma gives sufficient conditions for the equivalence of two codes $C_{i}^{\tau_{1}}$ and $C_{i}^{\tau_{2}}, i=1, \ldots, 4$.

Lemma 3 If τ_{1} and τ_{2} belong to one and the same right coset of G^{\prime} in S_{16}, then the codes $C_{3}^{\tau_{1}}$ and $C_{3}^{\tau_{2}}$ are equivalent.

Thus we only need the permutations from the set T - a right transversal of S_{16} with respect to G^{\prime}. The downside is that the size of T is huge 27243216000 thus the computations are time consuming. Since we only compute codes constructed from the same subcode C_{π} with generator matrix B_{3} all optimal self-dual [52, 26, 10] codes will have the same weight distribution $W_{52,1}(y)$ (see [6]). We conclude a summary of the orders of the automorphism group for each of the four cases displayed in Table 1.

Table 1. Orders of the automorphism groups of the constructed codes

case	$\|\operatorname{Aut}(C)\|=3$	\mid Aut $(C) \mid=6$	\mid Aut $(C) \mid=150$	Total codes
$C_{\varphi}=H_{1}$	16675	586		17261
$C_{\varphi}=H_{2}$	33321	138		33459
$C_{\varphi}=H_{3}$	4241	177	1	4419
$C_{\varphi}=H_{4}$	122654	934		123588

Theorem 3 Let C be a binary self-dual code of length 52 with an automorphism σ from (3) and $C_{\pi}=B_{3}$. Up to equivalence there are exactly 178727 such codes all with weight enumerator $W_{52,1}(y)$.

Remark: One of the constructed [52, 26, 10] codes has an automorphism group of order $150=2.3 .5$ and is equivalent to a code from [9]. Thus all the rest 178726 codes are new.

REFERENCES

[1] Conway J.H., Sloane N.J.A. A new upper bound on the minimal distance of selfdual codes. IEEE Trans. Inform. Theory, vol. 36, pp. 1319-1333, 1990.
[2] Huffman W.C. Automorphisms of codes with application to extremal doubly-even codes of length 48. IEEE Trans. Inform. Theory, vol. 28, pp. 511-521, 1982.
[3] Yorgov V.Y. Binary self-dual codes with an automorphism of odd order. Probl. Inform. Transm. 4, pp. 13-24 (in Russian), 1983.
[4] Yorgov V.Y. A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inform. Theory, vol. 33, pp. 77-82, 1987.
[5] Yorgov V.Y. The extremal codes of length 42 with automorphism of order 7. Discr. Math., vol 19, pp. 201-213, 1998.
[6] Yankov N., New optimal [52, 26, 10] self-dual codes. Designs, Codes and Cryptography, vol. 69 (2), pp. 151-159, 2013.
[7] Conway, J. H., V. Pless, Sloane, N. J. A. Self-dual codes over GF(3) and GF(4) of length not exceeding 16. IEEE Transactions on Information Theory, 25(3), 312-322, 1979.
[8] Bouyukliev, I. About the code equivalence, Advances in Coding Theory and Cryptography. Series on coding theory and cryptology, vol. 3. World Scientific Publishing, 126--151, 2007.
[9] Yankov, N., M.H. Lee, New binary self-dual codes of lengths 50-60. to appear in Designs, Codes and Cryptography, 2013.

About the authors:
Assoc.Prof. Nikolay Yankov, PhD, Faculty of Mathematics and Informatics, Shumen University, E-mail: n.yankov@shu-bg.net
Assoc.Prof. Radka Russeva, PhD, Faculty of Mathematics and Informatics, Shumen University, E-mail: russeva@fmi.shu-bg.net

The paper is reviewed.

[^0]: ${ }^{1}$ This paper is supported by Shumen University under Grant RD-08-241/12.03.2013

