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Vibration isolation experimental setup – theoretical investigation: The paper presents a 
parameter identification of a mechanical model, which describes an experimental setup for vibration isolation 
studding. The logarithmic decay and the damping coefficient are obtained from the free response in the time 
domain. A stiffness coefficient is obtained from frequency domain of the free response. A theoretical 
simulation is realized and the parameter’s values are verified in the frequency domain. 
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1. Introduction 
An experimental setup for studying of mechanical vibrations is presented in [6]. With 

the help of this setup, the resonance phenomenon can be demonstrated. Also, the 
amplification of the amplitude of vibrations as well as the vibration isolation can be 
observed. To understand the relationships between these experimentally observed 
processes and the theory of mechanical vibrations, it is necessary to do a theoretical 
investigation. This means to derive and solve the differential equation of the vibrations. It 
will give a solution in the time domain. After that, as a general rule, it is necessary a 
Discrete-time Fourier Transform (DFT) to be done for transferring the time-diagram to 
spectrogram of the vibrations [4, 5]. In this work, the vibrations are harmonic and it is no 
need to take DFT. It is enough just to find the maximum value of a steady state time signal 
and it is the amplitude of the vibrations for given frequency. 

The aim of this work is to identify the parameters of the mechanical model of the 
experimental setup, which is presented in [6]. Also, this work considers a theoretical 
simulation of this experimental setup. Another one aim of this paper is to compare and 
correlate the models used in the classical mechanics and in the control theory. Also, this 
paper is concerned about comparing and correlating the notations of the model 
parameters. In the Russian-language literature, it is appropriate to notate the stiffness 
coefficient with  and the coefficient of viscous friction with . Contrariwise, in English 
literature, it is appropriate to notate the stiffness coefficient with  and the coefficient of 
viscous friction with . In [6] is used the English notations. In this work is used the Russian 
notations. 

2. Mechanical model 
As it is justified in [6], the mechanical model for investigation of the vibrations of the 

experimental setup is one DOF with kinematic excitation. This model is shown on Fig. 1. In 
this work, the excitation is harmonic, so .  

 

 
Fig. 1 One DOF model with kinematic excitation 
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3. Mathematical models 
The differential equation of the investigated vibrations is 
                .                       (1) 
 
3.1. Mathematic model, commonly used in the classical mechanics 
 In the classical mechanics, Eq. 1 is usually written as [2, 7] 
                          ,                               (2) 

where 

                                                                                                                               (3) 

 is the natural frequency of the system and 
                                                                  .                                                              (4) 
is the damping coefficient. 

 
Equation (2) has a harmonic steady state solution: 
                                                .                                                       (5) 

The parameters of Eq. 5 are obtained through substituting of this equation and its 
derivatives in the differential equation. Then, the amplitude is 

                                         .                                                   (6) 

3.2. Transfer function 
In the control theory, Eq. 1 is usually written as [1,3] 
                      ,                                 (7) 
 

where 
 
                                                                                                                                   (8) 
 
is the time constant of the system and 
                                                                                                                              (9) 
is the damping ratio.  

The transfer function of mechanical system investigated is derived from Eq. (7) with 
the help of the Laplace transform and has the following forms [1, 3]: 

                                               .                                                   (10) 
or equivalently 

 
                                               .                                                    (11) 

 

4. Model parameter identification 
The parameters of this model are: the mass , the stiffness coefficient , and the 

viscous friction coefficient . The mass value is measured, and in this work it is 
, 

 
4.1. Estimating the damping from the time domain of the free vibrations 
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The time-diagram of the free vibrations of the system investigated is shown on Fig. 2. 
The blue colored line represents the experimentally obtained data. The logarithmic decay 
is: 

                                                                                                          (12). 
For number of periods  and for the corresponding acceleration amplitudes  

 and , it is obtained . 
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Fig. 2 Free response of the investigated system 

 
The equation for the damping coefficient is: 
                                                         .                                                           (13) 

According to experimental investigation in [6], the resonant frequency is . 
Therefore, the resonant circular frequency, it . Then, according to Eq. 13, 
the damping coefficient is . The last step is to calculate the coefficient of the 
viscous friction from Eq. 4: 

                                                         .                                                        (14) 
From this equation, it is obtained . 

On Fig. 2, the red colored line represents a theoretically obtained free response. It is 
gathered from numerical solving of Eq. 1 for  and non-zero initial displacement. This 
theoretical solution is for k = 2.6 Ns/m, and one can observe that the free response 
calculated with this value fits to the tree response, which is obtained experimentally. 

 
4.2. Estimating the value of the stiffness coefficient 
From the roots of the characteristic equation of the Eq. 2, it is follows that the 

frequency of the free response is 
                                                   .                                                       (15). 
The resonant circular frequency  is the same as the frequency of the free response 

. Also, the free response frequency , can be obtained from the spectrogram of the free 
response, which time-diagram is already shown on Fig. 2. After discrete-time Fourier 
transform, the spectrogram is obtained and presented on Fig. 3. One can observe that the 
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value from the spectrogram  is close to the resonant frequency , 
wcis id determined in [6]. 
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Fig. 3 Spectrogram of the experimentally obtained system free response 

 
One can obtain the natural frequency from Eq. 15 as follows:  
                                             .                                                        (16)                              
According to Eq. 16 and Eq. 3, the stiffness coefficient of the spring is . 
 
4.3. Simulating and verifying in the frequency domain of the forced vibrations 
The experimentally obtained graph of amplitude versus frequency [6] is shown with 

green line on Fig. 4.  
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Fig. 4 Amplitude versus frequency graphs 

 
In this work, a numerical solution of Eq. 1 is obtained through function ode45 of the 

software system Matlab. This function implements the Runge-Kutta method [8]. The 
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maximal value of steady state acceleration is found and it is the amplitude for the 
corresponding frequency. In this way, the theoretical graph of amplitude versus frequency 
is obtained and plotted also on Fig 4. The red line corresponds to k = 2.6 Ns/m. A 
difference in the magnitudes at the resonance can be observed. Therefore, the theoretical 
graph is calculated and plotted also for k = 2.4 Ns/m (black line) and k = 2.2 Ns/m (blue 
line). Among these three values, the best fit is for k = 2.2 Ns/m. 

One can observe that the resonance point of the graph of amplitude versus 
frequency is significantly more sensitive to damping than the free vibrations decay. It is 
clearly seen by comparing Fig. 2 and Fig. 5. On these figures, it is to be observed that the 
free vibrations decay is slightly influenced when the viscous friction coefficient k changes 
from 2.2 Ns/m to 2.6 Ns/m. 

On Fig. 4, one can observe that the magnitudes, which corresponds to the low 
frequencies of 3Hz and 5 Hz has invalid. This is due to insufficient accuracy of the 
accelerometers used. 
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Fig. 5 Free response comparison 
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