Recovering Plane Curves by One of Their Conformal Invariants²

Radostina Encheva

Abstract: The group of rotations SO(3), preserving the unit sphere S^{2} in the Euclidean space \mathbb{R}^{2} , induces via a stereographic projection π a subgroup F_{0} of the Möbius group in the plane. The Euclidean theory of the Frenet plane curves is transferred naturally on the Riemann sphere S^{2} . We find invariant of Frenet plane curves under the group F_{0} which defines any Frenet plane curve up to transformation of the group F_{0} . We use this invariant to construct plane curves and for that purpose we apply an algorithm in the computer system Mathematica.

Key words: Möbius group, Frenet plane curves, stereographic projection, Riemann sphere.

1. INTRODUCTION

The two-dimensional unit sphere $S^2 \subset \mathbb{R}^3$, centered at the origin, is a model of the Gauss plane, supplied with a point of infinity . This model is realized via a stereographic projection π from the north pole of the sphere onto the plane R^2 through the equator. Making the point of infinity ∞ correspond to the north pole, π is a bijective conformal map in \mathbb{R}^3 . Under this map the sphere S^2 is known as a Riemann sphere. The group of rigid motions on the sphere S^2 coincides with the group of rotations SO(3) in \mathbb{R}^3 . Any spherical curve on the unit sphere, parameterized by an arc-length parameter, is defined up to a rigid motion on the sphere by a function called "spherical curvature" (see [6]). In [6] Tazawa interprets the Euclidean theory of the curves and surfaces in R^3 on the threedimensional unit sphere in \mathbb{R}^4 applying the algebra of guaternions. It is well-known that any Frenet curve is defined up to a rigid motion in the Euclidean space by its Euclidean curvatures. This fundamental theorem in the Euclidean curve theory is extended with respect to the group of direct similarities in [3]. Any Frenet plane curve, parameterized by an arc-length parameter of its spherical tangent indicatris, is defined up to a direct similarity by its shape curvature. The differential geometry of the curve with respect to the Möbius group is developed by Fialkow [4], Udo Hertrich-Jeromin [5] et al. But they don't consider the problem of recovering a curve from its conformal invariants. In the presented paper we explore pairs of curves correspondent via the stereographic projection π . We find a relation between the spherical curvature of a curve on the sphere S^2 and the Euclidean curvature of the corresponding plane curve. This relation determines an invariant of a plane curve with respect to a subgroup F_0 of the Möbius group in the plane. We prove existence and uniqueness theorems for plane curves, defined up to a transformation from the conformal group F_0 . These theorems give us an algorithm of recovering plane curves.

2. PRELIMINARIES

Let $S^2:(x^1)^2 + (x^2)^2 + (x^3)^2 = 1$ be the unit sphere in \mathbb{R}^3 , centered at the origin O, and $l(x^1, x^2, x^3), x^1 \neq 1$ be the position vector of an arbitrary point on S^2 , different from the pole $\mathbb{P}(1,0,0)$. Denoting by (u^1, u^2) the coordinates of any point in the equatorial plane, the reverse stereographic map $\pi^{-1}(u^1, u^2) \rightarrow (x^1, x^2, x^3)$ is given by the equations

$$x^{1} = \frac{(u^{1})^{2} + (u^{2})^{2} - 1}{1 + (u^{1})^{2} + (u^{2})^{2}}$$

² This paper is supported by Shumen University under Grant RD-08-227/12.03.2014

$$\begin{split} k & x^2 = \frac{2u^1}{1+(u^1)^2+(u^2)^2} \\ x^2 = \frac{2u^2}{1+(u^1)^2+(u^2)^2} , & (u^1,u^2) \in R^2. \end{split}$$

We have the following identifications $S^2 \cong R^2 \cup \infty \cong C \cup \infty \cong P^1(C)$, where $P^1(C)$ is one-dimensional projective space with respect to the field of the complex numbers C. Then

$$\pi^{-1}: z \to \left(\frac{\|z\|^2 - 1}{\|z\|^2 + 1}, \frac{2z}{\|z\|^2 + 1}\right), z \in \mathcal{C}, \pi^{-1}(\infty) = \mathbb{P},$$

where *z* is the norm of the complex number z and

$$\pi: m = (t, z) \in S^2 \setminus \mathbb{P} \to \frac{1}{1 - t} . z, \quad t \in R, \quad t \neq 1, \quad \pi(\mathbb{P}) = \infty. \quad (\text{see}[1])$$

Any rigid motion on the sphere S^{*} induces via the stereographic projection π a Möbius transformation in the plane. The next theorem describes the transformation from the subgroup F_0 of the Möbius group in the plane, generated by the group of rigid motion on the sphere \mathbb{S}^2 .

Theorem 2.1. The elements of the subgroup \mathbb{F}_{\emptyset} of the Möbius group in the plane, corresponding of the group SO(3) of rotations on the sphere S^2 via the stereographic projection π , are the following transformations:

a) rotations in **C**, represented by the equation $f(z) = a_z z_z ||a|| = 1$; $a_z z \in C$;

b) Möbius transformations in $C_{\infty} = C \cup \infty$, represented by the equation

$$f(z) = \frac{a.z+b}{-\overline{b}.z+\overline{a}}, ||a||^2 + ||b||^2 = 1; \ a,b,z \in C, b \neq 0,$$

where \overline{a} and \overline{b} are complex conjugates of the complex numbers a and b, respectively.

We omit the proof because it can be easily found in any complex function book.

It is clear that F_0 is a three-parameter subgroup of the Möbius group in the plane. Let $\mathbb{R}^{\alpha}_{\mathbb{N}} \in \mathfrak{SO}(\mathfrak{I})$ be a rotation on the sphere \mathcal{S}^2 about the axis (OM), defined by the point M with polar coordinates $(\varphi, \psi), 0 \leq \varphi \leq 2\pi, 0 \leq \psi \leq \frac{\pi}{2}$, through the angle . If M is the pole P of the stereographic projection π then $\varphi_0^{\alpha} = \pi \circ \mathbb{R}^{\alpha}_p \circ \pi^{-1} \in F_0$ is a rotation, centered at the origin, with an equation $f(x) = e^{i\alpha} \cdot x$. If $\mathbb{M} \neq \mathbb{P}$ then $\pi \circ \mathbb{R}^{\alpha}_{\mathbb{M}} \circ \pi^{-1} \in F_0$ is a Möbius transformations with an equation $f(x) = \frac{\alpha \cdot x + b}{-b_{\alpha} + \alpha}$, $\|\alpha\|^2 + \|b\|^2 = 1$; $\alpha, b, x \in C, b \neq 0$, where $\alpha = \cos \frac{\alpha}{2} + i \cdot \sin \frac{\alpha}{2} \cdot \cos \psi, b = \sin \frac{\alpha}{2} \cdot \sin \psi \cdot e^{i(\varphi - \frac{\alpha}{2})}$;

$$\cos\frac{\alpha}{2} = \operatorname{Re}(a), \ 0 \le \alpha \le 2\pi, \ \varphi = \operatorname{Arg}(b) + \frac{\pi}{2}, \ \sin\psi = \frac{\|b\|}{\sqrt{1 - \operatorname{Re}^b(a)}}, \\ \cos\psi = \frac{\operatorname{Im}(a)}{\sqrt{1 - \operatorname{Re}^b(a)}},$$

One-parameter set of curves, equivalent to a given plane curve with respect to the group F_0 , can be constructed applying the computer system Mathematica (see Fig.1).

Figure1. One-parameter set of plane curves equivalent to the logarithmic spiral

3. INVARIANTS OF A PLANE CURVE WITH RESPECT TO THE GROUP F.

We define the sphere $S^2 \subset \mathbb{R}^3$ by the equation:

$$l(u^{1}, u^{2}) = \left\{ \frac{(u^{1})^{2} + (u^{2})^{2} - 1}{1 + (u^{1})^{2} + (u^{2})^{2}}, \frac{2u^{1}}{1 + (u^{1})^{2} + (u^{2})^{2}}, \frac{2u^{2}}{1 + (u^{1})^{2} + (u^{2})^{2}} \right\}, (u^{1}, u^{2}) \in \mathbb{R}^{2}.$$

The standard orthogonal tangential frame field (l_1, l_2) at any point of $S^2 \setminus \mathbb{P}$ is given by the equations:

$$\begin{split} l_1 &= \frac{\partial l}{\partial u^1} = \frac{4}{(1+(u^1)^2+(u^2)^2)^2} \cdot \left\{ u^1, \frac{(1-(u^1)^2+(u^2)^2)}{2}, -u^1 u^2 \right\} \\ l_2 &= \frac{\partial l}{\partial u^2} = \frac{4}{(1+(u^1)^2+(u^2)^2)^2} \cdot \left\{ u^2, -u^1 u^2, \frac{(1+(u^1)^2-(u^2)^2)}{2} \right\}. \end{split}$$

Let (e_1, e_2) be the usual orthonormal frame field in \mathbb{R}^2 . We denote by <, > the standard dot product in the Euclidean plane \mathbb{R}^2 and replace the expression $\frac{4}{(1+|u|^2)^2+(u^2)^{2/2}} = \frac{4}{(1+|u|^2)^2}$ in (1), where $|u| = \sqrt{u^2} = \sqrt{<u, u>}$ is the length of the position vector $u = (u^1, u^2)$ in the plane, by μ . The differential π_s^{-1} of the map π^{-1} is determined by $\pi_s^{-1}e_1 = l_p$, 1 = 1, 2. Then $l_1^2 = l_2^2 = \mu$ and the components of the metric tensor g on the sphere S^4 are

$$g_{ij} = \begin{cases} 0, & t \neq j \\ u, & t = j \end{cases}$$

Hence the Christoffel symbols on S^2 are represented by the equalities

$$\Gamma_{ij}^{k} = \Gamma_{ji}^{k} = \begin{cases} -\sqrt{\mu} . u^{j}, & k = t; \\ \sqrt{\mu} . u^{k}, & k \neq t = j. \end{cases}$$

We consider a Frenet plane curve $c u(s) - (u^1(s), u^2(s))$, parameterized by an arclength parameter s, and denote by a prime " '" the differentiation with respect to the parameter s.

Lemma 3.1. Let $v(s) = (\sum_{i,j} \Gamma_{ij}^1 \cdot u^{j^*}, \sum_{i,j} \Gamma_{ij}^2 \cdot u^{i^*}, u^{j^*}), i, j = 1, 2$ be a vector function in the plane, defined by the curve *c*. Then $v = \sqrt{\mu} \cdot u - \mu \cdot \left(\frac{1}{\mu}\right)^t \cdot u^t$.

Proof. Applying the equalities (2) we get

$$\begin{split} & \sum_{i,l} \Gamma_{ll}^1.u^{i'}.u^{i'} = \Gamma_{11}^1 \cdot \left(u^{1'}\right)^2 + 2.\Gamma_{12}^1.u^{1'}.u^{2'} + \Gamma_{122}^1 \cdot \left(u^{2'}\right)^2 = \\ & -\sqrt{\mu} \cdot u^1 \cdot \left(u^{1'}\right)^2 - 2.\sqrt{\mu} \cdot u^2.u^{1'}.u^{2'} + \sqrt{\mu} \cdot u^1 \cdot \left(u^{2'}\right)^2 = -\sqrt{\mu} \cdot u^{1'}.2.\left(u^1.u^{1'} + u^2.u^{2'}\right) + \\ & +\sqrt{\mu} \cdot u^1 \cdot \left(\left(u^{1'}\right)^2 + \left(u^{2'}\right)^2\right) = -\sqrt{\mu} \cdot u^{1'}. < u, u > {}^t + \sqrt{\mu} \cdot u^1 \cdot \left[\overline{u^t}\right]^2 = -\sqrt{\mu} \cdot \left(u^2\right)' \cdot u^{1'} + \sqrt{\mu} \cdot u^1. \end{split}$$

Similarly, $\sum_{i,j} \Gamma_{ij}^2 u^{i'} \cdot u^{j'} = -\sqrt{\mu} \cdot (u^2)' \cdot u^{2'} + \sqrt{\mu} \cdot u^2$. Since $(u^2)^i = |u|^{2'} = (\frac{2}{\sqrt{\mu}} - 1)' = \sqrt{\mu} \cdot (\frac{1}{\mu})'$, the proof is completed.

Let γ be the corresponding spherical curve on the sphere S^2 , obtained via the reverse stereographic projection n^{-1} from the plane curve c. We determine γ by the vector function l = l(a), where a is an arc-length parameter of γ , and denote by ∇ the covariant differentiation on S^2 . The unit tangent vector t of a curve γ is t(a) = l'. For the Frenet frame *ltn* at an arbitrary point of γ we have the equalities:

 $t = l_t^t$, $t^t = -l_t | \tilde{\kappa}^t \cdot n_t = -\tilde{\kappa}^t \cdot t_s$. The function $\tilde{\kappa}(s) = |\nabla_t t|$ is called a spherical curvature of the curve γ (see [6]).

Theorem 3.1. Let $c: u(s) = (u^1(s), u^2(s))$ be a Frenet plane curve, parameterized by an arc-length parameter s, and γ be its spherical pre-image on the sphere S^2 via the stereographic projection π . If κ and $\tilde{\kappa}$ are the Euclidean curvature and the spherical curvature of the curves c and γ , respectively, then

$$\kappa^{2}(s) = \frac{1}{\mu} \cdot \kappa^{2}(s) - 1 - \frac{2}{\mu} \cdot (S_{\sigma})(s),$$

where $\sigma = \sigma(s)$ is an arc-length function of γ and $(s_{\sigma})(s)$ is the Schwarzian derivative of $\sigma = \sigma(s)$.

Remark. The Schwarzian derivative of an arbitrary function f = f(t) is expressed as $(S_f)(t) = \left(\frac{f^{tt}}{f^t}\right)^t - \frac{1}{2} \cdot \left(\frac{f^{tt}}{f^t}\right)^2$, where we denote by "t" the derivative with respect to the parameter *t*.

Proof. Let $\gamma: l = l(\sigma)$. Then $l = \frac{dl}{ds} = u^{1'} \cdot l_1 + u^{2'} \cdot l_2 = u^{t'} \cdot l_t$, using an Einstein summation. Since $d\sigma = \sqrt{\mu} \cdot ds$ is the linear element of γ on S^2 , we have that $t = \frac{dl}{d\sigma} = \frac{dl}{d\sigma} \cdot \frac{d\tau}{d\sigma} = \frac{1}{\sqrt{\mu}} \cdot l$. Applying a covariant differentiation on the sphere S^2 we obtain that $\nabla_t t = \nabla_{\frac{1}{\sqrt{\mu}}} \cdot \frac{1}{\sqrt{\mu}} \cdot l = \frac{1}{\sqrt{\mu}} \cdot (\frac{1}{\sqrt{\mu}} \cdot \nabla_l l + l(\frac{1}{\sqrt{\mu}}) \cdot l) = \frac{1}{\mu} \cdot \nabla_l l + \frac{1}{\sqrt{\mu}} \cdot (-\frac{1}{2\mu\sqrt{\mu}} \cdot \mu^t) \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l l - \frac{1}{2\mu^2} \cdot \mu^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l l + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = (\frac{1}{\mu} \cdot u^{k''} + \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot l_k = \frac{1}{\mu} \cdot \nabla_l t + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot u^{k'} \cdot u^{k'} + \frac{1}{2} \cdot (\frac{1}{\mu})^t \cdot u^{k'} \cdot u^{k$

$$|\nabla_{t}t|^{2} = \mu \cdot \left(\frac{1}{\mu} \cdot u^{k''} + \frac{1}{\mu} \cdot \Gamma_{tp}^{k} \cdot u^{t'} \cdot u^{t'} + \frac{1}{2} \cdot \left(\frac{1}{\mu}\right)^{t} \cdot u^{k'}\right)^{2} = \frac{1}{\mu} \cdot |u^{t'}|^{2} + \frac{1}{\mu} \cdot v^{2} + \frac{\mu}{4} \cdot \left(\frac{1}{\mu}\right)^{t} + \frac{2}{\mu} \cdot \langle u^{t'}, v \rangle + \left(\frac{1}{\mu}\right)^{t} \cdot \langle v, u^{t} \rangle,$$
(3)

where v(s) is the vector function, defined in Lemma 3.1. Using the expression in the mentioned lemma and replacing the equalities

$$\begin{split} v^2 &= \frac{4.u^2}{(1+u^2)^{2^2}}, \quad < u^{\prime\prime}, v > = \frac{2. < u, u^{\prime\prime} >}{1+u^2} = \frac{u^{2^{\prime\prime}}-2}{1+u^2} \\ &< v, u^\prime > = -\frac{2. < u, u^\prime >}{1+u^2} = -\frac{u^{2^\prime}-2}{1+u^2} \end{split}$$

in (3), after some reorganization and simplification we get $\tilde{\kappa}^2(s) = |\nabla_t t|^2$ and complete the proof.

Using the properties of the Schwarzian derivative and the statement in theorem 3.1. we obtain that $\ddot{\kappa}^2(\sigma) = \frac{1}{n} \kappa^2(\sigma) - 1 + 2 (S_s)(\sigma)$ for the arc-length parameter σ of γ . Let we denote by $\mathcal{M}(\sigma)$ the right side of the last expression. It is clear that the function

$$\mathcal{M}(\sigma) = \frac{1}{\mu} \kappa^{2}(\sigma) - 1 + 2 \cdot (S_{s})(\sigma),$$
 (4)

defined for any Frenet plane curve c_i is an invariant under the subgroup F_{i} of the Möbius group in the plane.

Theorem 3.2 (Uniqueness theorem). Let $I \subset R$ be an open interval and let c_s : $I \to R^2$,

t = 1, 2 be two plane Frenet curves of the class C^2 , parameterized by the same arclength parameter σ of their stereographic images on the sphere S^2 . Assume that the curves c_1 and c_2 have the same invariants $\mathcal{M}_t = \mathcal{M}_t(\sigma)_t t = \mathbf{1}_t \mathbf{2}_t$ defined by (4), i.e. $\mathcal{M}_1(\sigma) = \mathcal{M}_2(\sigma)$ for any $\sigma \in I$. Then, there exists a transformation $f \in F_0$ such that $c_2 = f \circ c_1$.

Proof. Since $\mathcal{M}_1(a) - \mathcal{M}_2(a)$ then the spherical pre-images γ_1 and γ_2 of the curves c_1 and c_2 , respectively, via the stereographic projection $m S^2 \rightarrow R^2$, have the same spherical curvatures. Therefore, there exists a rotation $\rho \in SO(3)$ such that $\gamma_2 = \rho(\gamma_1)$. Hence $c_2 = \pi(y_2) = \pi \circ \rho(y_1) = \pi \circ \rho \circ \pi^{-1}(c_1)$, where $f = \pi \circ \rho \circ \pi^{-1} \in F_0$ and the proof is completed.

Theorem 3.2 (Existence theorem). Let $g: I \to R$ be a function of class \mathbb{C}^{∞} . Let $\mathfrak{g}_{1\ell}^{\mathbb{Q}} \mathfrak{g}_{2\ell}^{\mathbb{Q}}$ be right-handed orthonormal pair of vectors at a point c_0 in the plane \mathbb{R}^2 . There exists a unique Frenet curve $c : I \rightarrow R^2$, which satisfies the conditions:

(a) there is $\sigma_0 \in I$ such that $c(\sigma_0) = c_0$ and the Frenet frame of c at c_0 is g_1^0, g_2^0 ; (b) for any $\sigma \in I$, $\mathcal{M}(\sigma) = g^2(\sigma)$, where $\mathcal{M}(\sigma)$ is the function, determined for the curve c by the equality (4).

Proof. Let l_{ij} be the corresponding point of the point c_{ij} via the stereographic projection $\pi: S^2 \setminus \mathbb{P} \to \mathbb{R}^2$, t_0 be the pre-image of the vector e_1^0 under the differential of the map π and n_0 be the unique vector that the triple l_0 , t_0 , n_0 is an orthonormal right-handed trihedron in \mathbb{R}^3 . Let us consider a matrix-valued function $\mathcal{X}(\sigma) = (\mathfrak{l}(\sigma), \mathfrak{t}(\sigma), \mathfrak{n}(\sigma))^T$. Solving the system of first order linear differential equations

$$\frac{d}{d\sigma} \mathcal{X}(\sigma) = A(\sigma) \mathcal{X}(\sigma)$$

$$1 \quad 0$$

$$0 \quad 0$$
or and initial so

with a given matrix $A(\sigma) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & g \\ 0 & -g & 0 \end{pmatrix}$ and initial conditions $l_{0^{\mu}} t_{0^{\mu}} \pi_0$ we obtain a

unique solution $\mathcal{X} = \mathcal{X}(a)$, defined for all $a \in I$, and $\mathcal{X}(a_0) = (I_0, t_0, u_0)^T$ for some $a_0 \in I$. It is routine to prove that the matrix $\mathcal X$ is orthogonal. This means that the vectors $l(\sigma), t(\sigma), n(\sigma)$ form an orthonormal triple in \mathbb{R}^3 for any $\sigma \in I$. Let y be a spherical curve. defined by the vector function l - l(a), and let c - u(r) be its corresponding plane curve. It is clear that the condition (a), in the statement of the theorem, is fulfilled. Since the spherical curvature $\tilde{\kappa}$ of \tilde{r} is $\tilde{\kappa} - \tilde{k}$ then the proof of the condition (b) is obviously.

Now we can describe an algorithm of recovering a plane curve from one of its conformal invariants. First we fix a point c_0 and a right-handed orthonormal pair of vectors \mathbf{e}_{1}^{0} \mathbf{e}_{2}^{0} at a point \mathbf{e}_{3} in the plane \mathbf{R}^{2} . According the proof of the theorem 3.2, for a given function $g: I \to R$ of class C^{∞} , we solve the system (5) with appropriate initial conditions. In the general case only a numerical solution of the system (5) is possible. This solution defines a spherical curve γ whose stereographic image $c = \pi(\gamma)$ is a plane curve, determined by the function g_i , up to transformation from the group F_{Ω} . We apply this algorithm in the computer system Mathematica.

Example. Let $\mathcal{M}(\sigma) - \cos(\sigma)$, $c_0 = (1, 0)$, $c_1^0 = (0, 1) \in \mathbb{R}^2$. A plane curve with a conformal invariant $\mathcal{M}(\sigma) = \cos(\sigma)$ and its corresponding spherical curve under stereographic projection π are obtained by Mathematica and represented on Fig.2.

Other examples are considered in the demonstration [2], published on the site of Wolfram Demonstration Project. Moreover, it is shown here, how the curve depends on the parameters of the three-parameter subgroup $F_{\rm fl}$ of the Möbius group in the plane.

REFERENCES

- [1] Berger, M., Geometry I. Springer, New York, 1998.
- [2] Encheva, R. Family of Plane Curve in the Extended Gauss Plane Generated by ne Function, Wolfram Demonstrations Project, Published: July 2013, http://demonstrations.wolfram.com/ FamilyOfPlaneCurvesInTheExtendedGaussPlaneGeneratedByOneFunc/
- [3] Encheva, R. and G. Georgiev, Similar Frenet Curves, Result. Math., 55 no. 3-4 (2009) 359-372.
- [4] Fialkow, A., The conformal theory of curves, Trans. Amer. Math. Soc, 51:435–501, 1942.
- [5] Hertrich-Jeromin, Udo, Introduction to Möbius Differential Geometry, London Math. Soc. L. N. Series 300. Cambridge University Press, Cambridge, 2003.
- [6] Tazawa, Y., Curves and surfaces in the three dimensional sphere placed in the space of quaternions, Innovation in mathematics, Transactions on Engineering Sciences, vol. 15 (1997) 459-466.

About the author:

Assoc. Prof. Radostina Encheva, PhD, Faculty of Mathematics and Informatics, Shumen University, E-mail: r.encheva@fmi.shu-bg.net