
НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2015, том 54, серия 3.2  
 

 - 162 -

 

Simple non preemptive task switching for 8 bit PIC microcontrollers 

 

Orlin Tomov 

 

Abstract: The paper describes an approach for a simple non-preemptive/cooperative multitasking on 

8 bit PIC microcontrollers, using XC8 compiler. 

Key words: Computer Systems, Embedded systems, Real time execution, Multitasking. 

 

INTRODUCTION 

Very often, in the embedded systems, there are time critical applications. Moreover, 

many algorithms are time-based, including tasks, that require delays from a couple of 

milliseconds to hours. Some are very critical about the time, and some are not so strict. 

The techniques for software delay are not an option here, because of the requirement  for 

real-time execution.  The classical usage of timers is not very handful also, due to the 

presence of many activities, needed to be performed at various intervals of time on one 

hand, and the limited number of hardware timers on another. A problem are also the big 

intervals of a couple of hours, that may require external clock signal. Here we have to use 

the support of an operating system, or any other approach. 

 

COMPARISON OF SOME POPULAR OS AND APPROACHES 

There are many operating systems and libraries, supporting multitasking for 8 bit 

embedded devices. Some of them are open-source, some are commercial. There are 

some ports for the 8 bit PIC microcontrollers, like FreeRTOS [1], SalvoRTOS [3], 

PICThread [4], CalvinRTOS [5], Pic'Xe [6], PicOS18 [7] and many others. In the following 

table are shown the most important characteristics for each of them. 

 

Table 1 

OS/Library 
Compiler/ 

Assembler 
Commercial

Cooperative/

Preemptive 

Time-based 

task 

switching 

Additional 

code size / 

Overhead

FreeRTOS C18, wizC No Preemptive Supported Big 

SalvoRTOS HI-TECH 

PICC, IAR, 

C18 

Yes Cooperative Supported Relatively Big

PICThread Any C 

compiler 

No Cooperative No Very small 

CalvinRTOS Assembly / C No Cooperative Supported Very small 

Pic'Xe Assembly No Cooperative Supported Very small 

PicOS18 C18 No Preemptive Supported Average 

 

FreeRTOS is a very powerful operating system that support many features, as an 

addition to multitasking, like TCP/IP stack, filesystem, etc. This is one of the very few 

systems, that support pre-emprive task switching. The main problem here is the overhead 

(which is a problem for devices with small amount of flash and RAM memory), and the lack 

of support for the latest compiler from Microchip. 

SalvoRTOS is a very functional non-preemptive system, but it is also lacking the XC8 

support. Besides it is a commercial OS, which limits its usage and support. 

PicThread is a very interesting approach for implementation of non-preemptive 

multitasking with just three simple macros - THREAD_START(); THREAD_BREAK; 



НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2015, том 54, серия 3.2  
 

 - 163 -

THREAD_END(). All threads are defined within an infinite loop. The first and the last 

macro are defining the beginning and the end of each process, while  THREAD_BREAK 

defines the places in the thread, where it can be interrupted. This solution uses only 2+n 

additional bytes of RAM, where n is the number of threads. The code overhead is just 7-8 

instructions for THREAD_START(); 5-6 instructions for THREAD_BREAK; and 6 

instructions for THREAD_END() [3].  It is an extremely universal idea, that could be ported 

to any compiler for just a couple of minutes. It is very handy, but when we are talking about 

real time, and especially for timing applications, critical to tens of microseconds, this 

approach fails. 

PIC'XE is also an interesting solution, but it is written in assembly language, which is 

a problem for its integration or porting to a modern compiler. 

PicOS18 is an open source OS. It supports pre-emptive task switching, but the price 

for this is a bigger source-code overhead. It is written for the C18 compiler. 

From the overview above, it is obvious, that none of the selected items support the 

latest compiler XC, from Microchip (except PicThread, that could be ported), and there is 

no simple solution, to allow easy implementation of time-based real time applications. 

 

A SUGGESTION 

In order to provide timing delays from milliseconds to a couple of hours, without the 

need of an external clock signal, we need a a precise system timer. To do this without the 

help of the hardware is impossible. So we need a time tick from one of the device timers 

and to use its overflow interrupt. Practically, we can use Timer0 and set it up to fire an 

interrupt after 1ms. In the ISR we can re-initialize T0 and increment a 24 bit unsigned 

integer, which will be our system timer. Thus we can achieve overflow every 4hours and 

39 mins. So our process can use relatively precise delay from 1ms to 4h39m.  

Adding a delay to a process should be as follows: 

1. A process  checks the current status of the system timer; 

2. Add the needed delay to the timer and store the result in a variable , specific 

for the current process; 

3. Give the CPU resources to the next process. 

To make this functional, we need to define the following array of structures: 

 

struct multithread_timing{ 

 bit enabled; 

 unsigned short long deadline; 

 void (*thread)(void) 

 }; 

multithread_timing threads[10]; 

 

Where deadline is the time, when the process should continue, calling a function, 

pointed by the (*thread)(void). The time in deadline is according to the system timer. The 

flag enabled indicates whether the deadline is a valid time or not. 

In the ISR, except the increment of the system timer, we need a cycle code, that 

checks every structure of the array threads and inspects its deadline (fig. 1). If it is 

reached, it calls the function, defined by the (*thread)(void) pointer. 

Several requirements should be considered, implementing this approach. XC8 can  

not use the classical algorithm for calling functions, because of the limited depth of the 

hardware stack. Instead if this it supports a lookup table [7] to store the return address of 

every function. Thus, the hardware stack is used only for the return addresses from 

interrupts. So this option has to be enabled, otherwise the stack can overflow and the 

program will have unpredictable behaviour. 



НАУЧНИ  ТРУДОВЕ  НА  РУСЕНСКИЯ  УНИВЕРСИТЕТ -  2015, том 54, серия 3.2  
 

 - 164 -

 

Fig. 1. 

 

Another consideration is to find the balance between the length of the minimal time 

slice (the time at which T0 overflows) on one hand, and the maximum length for execution 

of a function, before it free the CPU resources.  

If we have a huge functions, not finishing within the time slice, that  may cause  a fast 

exhausting of the hardware stack and the system will fail because of the loss of its return 

addresses. So if the algorithm does not require timing or task switching within 1ms, it is not 

a good idea to lower this time. As a conclusion we may say – longer time slice, bigger 

function code, more freedom to the programmer, less accuracy with the time 

measurement.  And vice-versa – smaller time slices require smaller function code, so the 

programmer should be very careful about the execution time of each function not to 

exceed the time slice, but he will reach a better time-response  of the system. 

 

CONCLUSIONS AND FUTURE WORK 

The suggested approach is simple and useful, but requires time for the programmer, 

to examine the code for the scheduler (ISR) and to design his application to “fit” in the 

suggested format. A further development of this project should deliver a library, containing 

a delay macro, allowing multiple tasks to be executed. 

 

REFERENCES 

[1] http://www.freertos.org/ 

[2] http://www.pumpkininc.com/ 

[3] http://www.romanblack.com/PICthread.htm 

[4] http://fse.bc.ca/Calvin.html 

[5] http://picxe.sourceforge.net/ 

[6]http://softelec.pagesperso-orange.fr/Projects/RTOS/PICOS18/Projects_RTOS_ 

PICOS18_us.htm 

[7] http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en559017 

 

About the author: 

Assist.Prof. Orlin Tomov, PhD, Department of Computer Systems, University of 

Rousse, е-mail: OTomov@ecs.ru.acad.bg 

 

The paper has been reviewed. 

 


