PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, volume 55, book 6.1.
HAYYHHU TPYJOBE HA PYCEHCKUSI YHUBEPCUTET - 2016, Tom 55, cepus 6.1.

SAT-1.405B-1-MIP-02
GPU Accelerated Planar Grid Generation for Cloth Simulation

Stanislav Kostadinov

Cb3aaBaHe Ha NOBBLPXHUHHU peLleTKU 3a BUPTYariHU cUMyrnaumm Ha
nnart ypes rpacpuyeH npouecop

CrtaHucnas KoctaguHoB

Abstract: This paper presents an approach for GPU acceleration of planar grid generation with a
rectangular topology. To accelerate computing analyses, graphics units (GPU) are widely used as a low-
cost, low-memory algorithms and high-performance computing platforms. The algorithm proposed in this
paper is executed over a graphics processor and its main purpose is fast generation of large grids for cloth
simulation with less memory usage.

Key words: Cloth Simulation, Grid Generation, GPU acceleration.

Pe3rome: [Joknadbm npedcmass nodxod 3a cb3dasaHe Ha MO8bPXHUHHU Peuwemku C rpasobab/iHa
mornonoeauss nocpedcmeoM rnpoepamu, rfpedHasHadyeHu 3a napasiesiHo rnpoepamuparde. C uyen
yeeniu4agaHemo Ha u34uciumesiHama MoOW, ce U3rosizgam rpozpamu, U3MbJiHSeaHU 6bpxy epachuyeH
npouecop. OcHOBHUME MPUYUHU ca WUPOKOMO UM pasfpocmpaHeHue, Huckama ueHa U Hal-seye
gucokama us4yuciumesnHa mow. Anzopumbmbm, npedcmaseH 8 mo3u O00Knald, ce U3MbriHsa8a UMEHHO
8bpXy 2pachuyeH Mpouecop U OCHO8HUME My Ueflu ca MasKko 3aemaHa namem u 6bp30 2eHepupaHe Ha
2oieMu no pasmepu pelwemku 3a yesume Ha eupmyasnHume cuMmynayuu Ha nnam.

Knroyoeu dymu: BupmyanHu Cumynayuu Ha lNnam, Cb30asaHe Ha Pewemku, paghuyHO ycKkopeHue

INTRODUCTION

In the recent years many developers in the field of Computer Graphics work on
algorithms executing over large amount of data. One of these algorithms is generation of
large grids used in cloth simulation. It requires a rectangular topology grid to be generated
on a cloth piece, so that the cloth simulation of the masses and springs can run [1] [2] [3].
One of the most precise solutions is to use direct optimization method [4], but as shown in
the next sections, it is not very fast for large grids.

One of the newest research areas within numerical analysis is the parallel mesh
generation. It is union between two scientific computing disciplines: computational
geometry and parallel computing. Parallel mesh generation methods are using multiple
processors or threads. One of the challenges in parallel mesh generation is to develop
parallel meshing algorithm that generates meshes by using graphics units. The approach
presented in this paper implements the improved length functional with non-uniform
weights [5] and is executed over GPU. Detailed description of the solution is presented in
the third section. The rest of the paper is organized as follows. The next section reviews
previous work on grid generation. Section 3 describes in details the proposed approach.
The last section concludes the paper and gives ideas for future work.

PREVIOUS WORK ON GRID GENERATION

As above mentioned one of the best quality meshes are generated with variational
optimization approach by Castillo and Otto [6] [7]. They treat the grid generation problem
as discrete from the very beginning. Several discrete functionals (length, area, orthogonal)
are defined and their variation is minimized. They define the following generalized length
functional (1). This produces linear systems, which can be solved much faster than for the
elliptic generator. If only the length functional is used, then the x and y coordinates are

-9-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, volume 55, book 6.1.
HAYYHHU TPYJOBE HA PYCEHCKUSI YHUBEPCUTET - 2016, Tom 55, cepus 6.1.

decoupled and two independent systems should be solved, one for x and one for y
coordinates, which have the same system matrix. This results in faster generation, but
minimization only of the length variation sometimes produces folded grids. That is why
area is added too. However, x and y coordinates are coupled and the number of unknowns
is increased twice.

+ + + (yi,j+1 _yi,j)z

2 2 2 2
ij Bij CU' DU' (1)

F, :lz(xm,j _xi,j)z (yi+1,j _yi,j)z (‘xi,j+1 —X;;
24 A

Another approach is implements the improved length functional with non-uniform
weights [5]. The idea of this approach is to use non-uniform weights, which are small in the
center of the grid and gradually increase as moving away from the center and reach their
maximum at the boundary curves. In this way the addends in functional (1), which
correspond to edges that are closer to the boundary curves, will have greater influence in

the sum and the edges will follow the shape of the boundary curves (2).

— _. 2
L, =0.01+ 020 ~D =0
u

max

=1,...,u

max

— — / 2
ij — 001+k [O'S(Vmax 1) J]

o] =LV

Vo @)

The main idea of the approach, proposed in this work, is to provide a mechanism for
execution of the improved length functional with non-uniform weights through different
graphics units.

GPU ACCELERATED METHOD

This main idea of the GPU approach is to use graphics pipeline for parallel
computation. There are two stages within the graphics unit pipeline where we can plug
code: vertex shader and pixel (fragment) shader (Fig. 1). Pixel shader computes each
pixel color and passes them to the frame buffer — buffer data shown on the display.

Vertex Generating = . 5.5
Vertices Shader Primitives Rasterization Pixel Shader Mixing

Fig. 1 Graphics unit pipeline

Frame buffers are two-dimensional array of pixels and they are similar as a structure
to the topology grids. Each pixel contains three color components: red, green and blue
color. Analogically, each 3D point contains three floating point components: x, y and z.

The approach passes the initial grid (it contains only grid contours) as floating point
texture and accesses the frame buffer with the result grid which is the same structure —
floating point two-dimensional array. The main idea is to use graphics parallel computation
by substituting textures with grids and shader programs for manipulation of colors with the
improved length functional algorithm. The initial grid contains the contours and initial
values of the inner nodes. Using numerical analysis, algorithm solves the problem and find
the results with a limited error — €. The pixel shader implements algorithm that computes

-10 -

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, volume 55, book 6.1.
HAYYHHU TPYJOBE HA PYCEHCKUSI YHUBEPCUTET - 2016, Tom 55, cepus 6.1.

each inner node (each node which is not part of the contour) of the grid by the neighbor
nodes and equation 1 and 2. The output frame buffer is a result that partially satisfies the
need of our cloth simulation purposes. Fragment shader is implemented with GLSL
(OpenGL Shading Language) and each inner node is computed by using equation 3 and
values from the neighbor nodes within the input two-dimensional array.

R(i-17)+R{(i+1 Riij-)+R 1
(H)+RGHLD tLJ+(+)f,(_ _)

Riij
()= = 7 .

Fig.2 presents the neighbors of two different nodes. The result value of the first node
will be closer to the real one because there are two precise neighbor nodes (part of the
contour) and the second one won’t be so close to the expected result. Numeric analysis
prescribes infinite iteration of the algorithm over the grid otherwise the result won’t be
absolutely accurate. This iterative approach identifies a cycle where each iteration is one
execution of the graphics pipeline and input for each pass through the pipeline is the
output from the previous one.

Fig. 2 Initial planar grid and node connections: 1 — node with two precise neighbour nodes, 2- node
with one precise neighbour node

The result grid will be used in cloth simulation and that is why it is not necessary to
generate the real grid nodes according to the CPU approach [5]. GPU approach has to
satisfy the cloth simulation restrictions. The distance between the real grid nodes and the
GPU algorithm nodes should be less or equal to specific length — € (numerical analysis
error). For the purposes of cloth simulation this error can be defines as half of a millimeter.
The average human body is less than 2 meters, so the error can be defined as ¢ = 272
(0.5mm/2m). So the infinite cycle can be limited to cycle that satisfies this error.

RESULTS

The initial values of the inner nodes of the grid can be all zeroes or a little
optimization can be implemented in the first pass of the algorithm. The first GPU pipeline
executing can initialize node to values that are closer to the real one. One example is the
average x, y and z component of the contour grid — Fig. 3. Better solution which ensures
less iterations is the algebraic interpolation of the nodes of the grid (4) — Fig. 4.

TR0.0) RODT1-v]

(0.9] | |
L py |TREO R D]_ _| b= wpue ranl v |)

Rluv)=[1-u

Experimental results from the average values and algebraic interpolation prove that

the less distance between initial and result values are, the less iterations has to be passes.

The example with average values is executed 943 times, and with algebraic interpolation
values only 312 times.

-11 -

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, volume 55, book 6.1.
E HA PYCEHCKUSA YHUBEPCHUTET - 2016, Tom 55, cepus 6.1.

HAYYHHU TPYJIOB

1

2 3 T3 o 4

Fig. 3 Four stages of transformation of grid data with average x, y and z component
Test results prove that GPU acceleration approach is faster for grids bigger than 900
nodes (Fig. 5). The time for calculation of the grid with the CPU approach grows
exponentially and that’s why it becomes useless for grids with huge number of nodes. The
required memory for the CPU approach grows exponentially, too. For example, solving the
problem with 1024x1024 nodes requires 1024x1024x1024x1024 points and such RAM
size (few terabytes) are inconsistent with the personal computers and other devices like

smartphones and tablets. Current approach requires memory enough to collect the data
about the grid (1024x1024 points).

1

Fig. 4 Four stages of transformation of grid data with algebraic interpolation of the nodes

On the other side, GPU algorithm provides powerful tool for calculation of huge grids.
Test ran on personal computers for grids with size 1024x1024 nodes end for a less than a
minute. The limitation of this approach comes from the maximum size of the frame buffer.
For example, 95% of all the devices have graphics unit with frame buffer bigger of equal to
4096x4096 (1% have unit with frame buffer 16384x16384). All of them have memory
bigger than the required one (the frame buffers 16384x16384 require less than 1 GB
RAM).

The input of the algorithm is implemented with Java code but it can be done with any
other programming language. It can be implemented for every kind of device (PC,
Smartphone, tablet, etc.) that has graphics unit. Tests are executed on personal computer
with this hardware: CPU Intel i7-4720HQ 2.60 GHz, RAM 8 GB, GPU NVIDIA GeForce
940M.

=12 -

PROCEEDINGS OF UNIVERSITY OF RUSE - 2016, volume 55, book 6.1.
HAYYHHU TPYJOBE HA PYCEHCKUSI YHUBEPCUTET - 2016, Tom 55, cepus 6.1.

10000

8000

6000
time, ms
4000

BOGPU Accelerated

2000 mDirect Optimization

— —_—
10x10 20x20 30x30 40x40 I 50x50

grid size

Fig. 5 Comparison between direct optimization algorithm and GPU accelerated

CONCLUSIONS AND FUTURE WORK
This paper presented an approach for GPU accelerated planar grid generation. The
following conclusions can be drawn:
e current approach is faster for grids with more than 900 knots
e GPU algorithm requires minimal amount of memory
e GPU algorithm can be executed with large grids as input over every kind of
device that has graphics unit
This approach can be extended and it can generate planar grids with different non-
uniform weights for each node. This can be done by simply generating the same size
texture as the grid with four weights for each node (instead of red, green, blue and alpha
component of the texture). This powerful algorithm can be used for calculation of other
problems which are using numerical methods for solving partial differential equations.
Such problem is heat transfer within non-uniform environment, etc.

REFERENCES

[1] Provot X., Deformation constraints in a mass-spring model to describe rigid cloth
behaviour, Proceedings of Graphics Interface, 1995, 141-155.

[2] Vassilev T., Spanlang B., Chrysanthou Y., Fast Cloth Animation on Walking
Avatars, Computer Graphics Forum, 2001, Vol. 3, 260-267.

[3] Vassilev T.1., Comparison of Several Parallel API for Cloth Modelling On Modern
GPUs, Proceedings of 11th International Conference CompSysTech 2010, Sofia, 2010.

[4] Smith E., Algebraic Grid Generation, Numerical Grid Generation, Vol. 137, 1982.

[5] Vassilev T.l., Kostadinov S., Planar Grid Generation for Simulation and
Visualization, Proceedings of the Bulgarian Academy of Sciences, 2014, Vol. 8, 1061-
1068.

[6] Castillo E., Otto J., A Practical Guide to Direct Optimization for Planar Grid
Generation, Computers and Mathematics with Applications, 1999, 123-156.

[7] Castillo E., A discrete variational grid generation method, SIAM Journal on
Scientific and Statistical Computing, Vol. 12, 1991, 454-468.

About the author:
Stanislav Dimchev Kostadinov, PhD, senior developer at ForkPoint, phone: 0898
237753, e-mail: sdkostadinov@uni-ruse.bg

-13 -

