
Reports Awarded with "Best Paper" Crystal Prize

224 Copyrights© 2016 ISSN 1311-3321

SAT-2G.303-1-CST-01

NON-DETERMINISM SUPPORT IN THE FIBEROS EXOKERNEL

Milen Loukantchevsky,
Assoc. Prof., PhD, IEEE Member, ACM Member
Department of Computing, University of Ruse, BG
E-mail: mil@ieee.org

Nikolay Kostadinov, PhD
Department of Computing, University of Ruse, BG
E-mail: nkostadinov@ecs.uni-ruse.bg

Hovanes Avakyan, PhD
Department of Computing, University of Ruse, BG
E-mail: havakian@ecs.uni-ruse.bg

Abstract: Non-determinism is a fundamental concept in automata theory, algorithms and parallelism.

Dijkstra’s guarded commands as well as Hoare’s CSP alternative primitives are means for overcome of the intrinsic
for parallel systems non-determinism.

The fiberOS is educational non-preemptive cooperative exokernel. Represents an implementation of a simple
CSP machine using Windows fibers. The key CSP objects such processes and channels are supported as well as CSP
parallel, alternative and communications primitives.

This paper presents implementation of CSP alternative command in fiberOS. 2-channel and n-channel versions
of this command are supported. The first version is for introductory purposes, while the second one is STL (C++
Standard Library) based. Both are truly non-deterministic and could be used to profound study of that fundamental
concept.

Keywords: Alternative command, C++, CSP, Exokernel, Non-determinism, Parallelism.

INTRODUCTION
Non-determinism is a fundamental concept well known in automata and algorithm theories

[1, 6]. Traditionally in these areas non-determinism is considered as result of missing predefined
transitions between system states. But in parallel systems where non-determinism is an intrinsic
feature, it is a result of random choice of transitions [6]. Dijkstra’s guarded command is a mean to
control and effectively use of the non-determinism in parallel systems [2, 3]. Guarded command
is evolved further by C.A.R. Hoare in his theory of Communicating Sequential Processes (CSP).
The CSP equivalent of Dijkstra’s guarded command is alternative command [4, 7].

Let us have as an example the next alternative command containing two alternatives

where G1 and G2 are guards of the processes P1 and P2 respectively. In case the events e1 and e2
do not occur simultaneously, then both guards will not evaluate as true in the same time. And we
got the deterministic machine transition diagram (fig. 1).

Fig. 1. Deterministic Machine Transition Diagram

Suppose our guards use CSP communications command <?> as follows

55th Science Conference of Ruse University, Bulgaria, 2016

Copyrights© 2016 ISSN 1311-3321 225

In this case the event e1 corresponds to receipt of a message by process P1 and e2 – by process

P2. Hence these events are not mutually exclusive in contrast with the deterministic case and we
have got the non-deterministic machine transition diagram (fig. 2).

Fig. 2. Non-deterministic Machine Transition Diagram

From the above follows that a process with two or more input channels included in one

common alternative command is non-deterministic.

I. CSP COMMUNICATIONS PRIMITIVES AND THEIR FIBEROS SUPPORT
CSP has two communications primitives – receive of message marked with <?> and send of

message marked with <!>. Their fiberOS equivalents [7] are respectively

bool RECV(CHAN* chanIn, CHAN_MSG* dst);
bool SEND(CHAN* chanOut, CHAN_MSG* src);

The CSP communication primitives and their fiberOS implementations use strong bilateral

synchronization called rendezvous.

Fig. 3. Rendezvous of communicating processes

In fig. 3 are shown two scenarios we could have with rendezvous. In both, the first process

which came to the point of communication is blocked until another come to that point [5]. As result
we have got the simplest possible communication channel – 1:1, unidirectional without buffering.

II. CSP ALTERNATIVE COMMAND IMPLEMENTATION IN FIBEROS
The general form of CSP alternative command has n alternatives

and can be considered as generalization of deterministic <if-else> operator. Only if all guards are
mutual exclusive we will have <if-else> deterministic behavior, otherwise the behavior observed
will be non-deterministic.

As distinct from <if-else> all guards (conditions) are with equal priority and are checked not
successively but at once. The fiberOS implementation of CSP alternative command follows its
semantic and is shown in fig. 4.

First we should build the list L with all guards evaluated true.

Reports Awarded with "Best Paper" Crystal Prize

226 Copyrights© 2016 ISSN 1311-3321

Secondly, it is checked if that list L is empty or not.
If the list L is not empty, the index k of the selected guard contained in L is determined by

uniform distributed random function . Then the control is given to the process Pk.
Otherwise, if the list L is empty, the alternative command terminates.

Fig. 4. Alternative command flow-chart

For educational purposes there are two fiberOS primitives (2-channel and n-channel):

int ALT(CHAN* chanIn1, CHAN* chanIn2, CHAN_MSG* dst);
int ALT(vector < CHAN* > & vChanIn, CHAN_MSG* dst);

The 2-channel ALT() is appropriate for educational purposes and introduction to the matter.

This is used in Section 3 of this paper. The n-channel ALT() as generalized form is preferable for
practical purposes. It gets the list of input channels vChanIn in STL (C++ Standard Library)
container of vector type.

III. FIBEROS TESTBED OF NON-DETERMINISM
In this section is presented an exemplary fiberOS testbed for non-determinism exploration.

The 2-channel ALT() is selected according to common sequence of consideration.
We choose the simplest parallel system with non-determinism. It is a 2:1 “producer-

consumer” system and consists of three processes – the producers P1 and P2 and the consumer Q:

The producers P1 and P2 are identical and execute N cycles before termination. In each

working cycle they send to Q the message msg. The consumer Q is non-deterministic by
specification – contains two alternatives which guards are commands for communication. It
executes (2 x N) cycles which equals to the total number of messages sent by two producers.

Two scenarios are investigated: deterministic and non-deterministic one.
First scenario assumes deterministic implementation of CSP alternative command by the

means of <if-else> operator. Let suppose Q checks first for message from P1 and after that for
messages from P2.

The result we eventually get in the first scenario is more than strange for a newcomer. The
consumer Q communicates only with P1 (fig. 5) ignoring any messages sent from P2. And the
parallel system finally encounters mutual deadlock - the consumer Q continues to wait for message

55th Science Conference of Ruse University, Bulgaria, 2016

Copyrights© 2016 ISSN 1311-3321 227

from P1 even after its completion and still ignores the messages from P2. Thus, only process P1
stops but P2 and Q do not.

Fig. 5. Left channel preferable under deterministic case

In result, the parallel system do not terminates (fig. 6).

Fig. 6. Mutual deadlock under deterministic case

The situation will turn just reflective if Q checks first for message from P2 and after that for

messages from P1. And the result will be the same – mutual deadlock of our parallel system of
three processes. The reason in both cases is in unconformity of deterministic <if-else> with process
communication of type rendezvous.

The second scenario assumes usage of fiberOS primitive ALT() which implements non-
deterministic semantics of CSP alternative command (fig. 4).

Fig. 7. Deadlock free communication under non-determinism

In this case the consumer Q receives regularly at equality basis all messages sent by the two

producers. And eventually the system completes its execution deadlock free (fig. 7).

Fig. 8. Exemplary execution of non-deterministic parallel machine under fiberOS

Reports Awarded with "Best Paper" Crystal Prize

228 Copyrights© 2016 ISSN 1311-3321

A snapshot of the second scenario execution under fiberOS is shown in fig. 8. The processes
Task 1, Task 2 and Task 3 correspond to P1, P2 and Q respectively. At the instant given P1 and P2
produced already 33 messages. And Q consumed 33 from P1 and 32 from P2 yet. Because of
random-driven nature of decision there is not and would not be any guarantee that messages from
P1 or P2 will overtake.

The only guarantee is that Q will consume eventually all messages generated and no any
deadlock will happen. And this is exactly what we need.

CONCLUSIONS
Leading methodological principle of science is to direct investigations to the essential

contradiction of the subject domain. At the area of computer systems development this is the
contradiction between the explicit parallelism of current computer architectures and the sequential
thinking.

The fiberOS non-preemptive cooperative exokernel is developed in the Department of
Computing of Rousse University as an educational tool. It is used at the first phase in the course
on “Parallel Computer Systems” along with CSP as fundamental mathematical model for
specification of parallel systems.

The authors adhere to the next phases in practical teaching of the base concepts and
mechanisms in the field of parallel systems:

- One node machine with multitasking (Windows/x86 platform, fiberOS executive, C
programming language);

- Conventional multi node machine with multitasking (X51/MCS51 platform, X51mp
executive, C programming language);

- Multi node machine with direct support of the parallelism at architectural level
(SMT/DLP core xCORE, no executive required, XC parallel programming language).

At the first of above phases the goal set up is to reach well understanding of processes as
active objects, channels as means of communications, parallel command, synchronization and
alternative command as specific for parallelism exploitation. This paper presents authors’
approach of introduction of means to control the intrinsic for parallel systems non-determinism.

REFERENCES
[1] Armoni, M., B. Mordechai. The Concept of Nondeterminism: Its Development and

Implementations for Teaching. // ACM SIGCSE Bulletin, Vol. 41, Num. 2, pp. 141- 160.
[2] Bernstein, A. Output Guards and Nondeterminism in “Communicating Sequential

Processes”. // ACM Transactions on Programming Languages and Systems, Vol. 2, Num. 2, pp.
234-238.

[3] Dijkstra, E. Guarded Commands, nondeterminancy and formal derivation of programs.
// Communications of the ACM, Vol. 18, Num. 8, pp. 453-457.

[4] Hoare, C.A.R. Communicating Sequential Processes. // Communications of the ACM,
Vol. 21, Num. 8, pp. 666-677.

[5] Loukantchevsky, M. Distributed Systems: Theory and Practice. Rousse: Rousse
University Press, 2014, ISBN 978-619-7071-35-1.

[6] Loukantchevsky, M., N. Kostadinov, H. Avakyan. About non-determinism and event-
handling in a SMT/DLP machine. // Rousse University Transactions, 2012, pp. 111-116, ISBN
1311-3321.

[7] Loukantchevsky, M., N. Kostadinov, H. Avakyan. CSP Support by fiberOS exokernel. //
Rousse University Transactions, 2014, pp. 109-114, ISBN 1311-3321.

