
Reports Awarded with "Best Paper" Crystal Prize

286 Copyrights© 2016 ISSN 1311-3321

SAT-1.405B-1-MIP-05

ACCELERATING COMPUTATIONS ON AN ANDROID MOBILE DEVICE

Tzvetomir Vassilev, Prof. PhD

Department of Informatics,

“Angel Kanchev” University of Ruse,

Phone: +359 82 888475

Е-mail: TVassilev@uni-ruse.bg

Abstract: This paper describes a technique for accelerating the computations on a mobile device (smartphone

or tablet) using parallel computing on a multicore CPU. The paper addresses a particular example of a mass-spring

cloth model for garment simulation. The simulation starts from flat garment pattern meshes positioned around a 3D

human body, then seaming forces are applied on the edges of the panels until the garment is seamed and several cloth

draping steps are performed in the end. The cloth-body collision detection and response algorithm is based on image-

space interference tests and the cloth-cloth collision detection uses a recursive parallel algorithm on the CPU. As the

results section shows the average time of dressing a virtual body with a garment on a modern smart phone is 2

seconds.

Keywords: Mobile computing, Parallel computations, Cloth Simulation

INTRODUCTION

Mobile computing has developed enormously in the last two decades. Almost everyone

nowadays has a multicore CPU smartphone with Android or iOS operating system and a mobile

graphics processing unit (GPU) than can be utilized to accelerate computations even further. With

the development of the cloud technologies mobile computing has been extended to a new mobile

cloud computing paradigm, where cloud services can be used as an additional computational

power or just data storage [1, 2].

This paper proposes a technique for accelerating a virtual try-on garment simulation on a

mobile device. The system has to solve several tasks. The first is the cloth simulation. We use a

mass-spring model described below, which is very suitable for parallelization. Collision detection

is the bottleneck in many cases of dynamic simulation. In a virtual try-on (VTO) system it has two

sides: cloth-body and cloth-cloth collision detection and response. The last task is stitching the

garment panels together. This is achieved via forces applied on the pattern seaming lines and the

simulation is performed until the garment panels are seamed.

The rest of the paper is organized as follows. The next section reviews existing approaches

for cloth modelling with different techniques for acceleration. Section 3 describes the

implementation of the virtual try on system on a mobile device with a GPU that supports only

OpenGL ES2. Section 4 presents and discusses some results and the last section concludes the

paper.

BACKGROUND

Previous work in cloth simulation

Many computer graphics researchers have tackled the physically based cloth modelling

problem for the last three decades. Terzopoulos et al. [3] viewed cloth simulation as a problem of

deformable surfaces and used the finite element method and energy minimisation techniques.

Provot [4] proposed a mass-spring model to describe rigid cloth behaviour, which is much faster

than the techniques described above. Its main disadvantage is the unrestricted elasticity of ideal

springs. In order to overcome this problem he applied a position modification algorithm to the

ends of the over-elongated springs. Later Vassilev et al. [5] used a velocity modification approach

to solve the super-elasticity problem.

55th Science Conference of Ruse University, Bulgaria, 2016

Copyrights© 2016 ISSN 1311-3321 287

Mass-spring model of cloth

The cloth model, utilised in this work, is based on the method described by Vassilev et al.

[5]. The elastic model of cloth is a rectangular topology mesh of m n mass points, linked to each

other by massless springs of natural length greater than zero. There are three different types of

springs: stretch, shear, and bending, which implement resistance to stretching, shearing and

bending.

Let pi(t), vi(t), ai(t), where i=1,…, m x n, be correspondingly the positions, velocities, and

accelerations of the i-th mass point at time t. The system is governed by Newton’s basic law:

ai = fi / massi, (1)

where massi is the mass of point pi and fi is the sum of all forces applied at that point. The force fi

can be divided in two categories.

The internal forces are a result of the tensions of the springs. The overall internal force

applied at the point pi is a sum of the forces caused by all springs linking this point to its

neighbours:

l

ikiliint k=)(pf Δl , (2)

where kil is the stiffness of the spring linking pj and pl and ilΔl is the elongation of the same spring

related to its natural length.

The external forces in this cloth simulation are three types: viscous damping (-c vi(t)), gravity

and seaming forces applied to the edges to be stitched together.

All the above equations make it possible to compute the force fi(t) applied on cloth vertex pi

at any time t. The fundamental equations of Newtonian dynamics can be integrated over time by

a simple Euler, Verlet or Runge-Kutta method [5].

Collision detection

Collision detection (CD) and response are the bottleneck of simulation algorithms especially

when dynamically changing curved surfaces are used. Most algorithms for detecting collisions

between cloth and other objects in the scene are based on geometrical object-space (OS)

interference tests. Some apply a prohibitive energy field around the colliding objects [3], but most

of them use geometric calculations to detect penetration between a cloth particle and a triangle of

the object together with methods that reduce the number of checks.

Some common approaches use recursive subdivision with bounding box hierarchy [7, 8].

Objects are grouped hierarchically according to proximity rules, flexible surfaces are subdivided

in patches and a bounding box is computed for each object or patch. The collision detection is then

performed by testing for intersections of bounding boxes. Other techniques exploit proximity

tracking [9] or curvature computation [7] to reduce the large number of collision checks, excluding

objects or parts which are impossible to collide.

Other approaches apply image-space tests [10, 11] to detect collisions. These algorithms

utilise the graphics hardware to render the scene and then use the depth map of the rendered image

to perform checks for collision between objects. In this way the 3D problem is reduced to 2.5D.

Vassilev et al. [5] applied a similar technique for detecting collisions between cloth and body when

dressing virtual actors. They created depth, normal and velocity maps using two orthographic

cameras that were placed at the centre of the front and the back face of the body’s bounding box.

The depth map was used for detecting collisions, while the normal and velocity maps were

employed for collision response. Vassilev & Spanlang [12] implemented this approach entirely on

GPU. They also proposed a method for collision detection and response between layers of cloth

utilizing several depth and normal maps stored in 3D textures running on the GPU.

Reports Awarded with "Best Paper" Crystal Prize

288 Copyrights© 2016 ISSN 1311-3321

Cloth simulation on a mobile device

Our extensive search could not find much work in the field of cloth simulation on mobile

devices. Jeon et al. [13] proposed an implementation of cloth simulation on a mobile device, which

was accelerated with the help of the mobile GPU. They used a mass-spring system and a vertex

shader with transform feedback (TFB) buffers, which available in OpenGL ES 3.0. However, they

did not offer any solution for a device supporting only OpenGL ES 2.0, on which TFB is not

available.

This paper proposes a solution for virtual try-on on a mobile device supporting only OpenGL

ES 2.0.

PROPOSED APPROACH

The capabilities of a GPU supporting OpenGL ES 2.0 are quite limited for general purpose

computations. Transform feedback and compute shaders are not supported in OpenGL ES 2.0, so

the only way to make computations is to use the old well known render-to-texture technique.

However, rendering to floating point textures is not possible either and in the best case one can set

as a rendering target a RGBA texture with 8-bit unsigned integers per colour at maximum. This

makes it impossible to utilize the GPU for cloth simulation, however it can be used to speed up

the collision detection, as described below.

Cloth simulation

In order to increase the performance the main simulation algorithms are written in C++ using

Native Development Toolkit (NDK). The NDK gcc compiler supports the OpenMP application

programming interface for parallel programming. A single for loop can be parallelized using the

compiler directive "#pragma omp parallel for".

One integration step of the proposed cloth simulation on the CPU can be described with the

following pseudo code:

Algorithm 1: Cloth simulation on multicore CPU

Parallelize For each spring

 Compute internal forces

 Add forces to 2 end mass points

Endfor

Parallelize For each mass point

 Add external forces

Endfor

Parallelize For each joint

 Add joint forces

Endfor

Parallelize For each mass point

 Compute velocity

 Do collision detection and response

Endfor

Parallelize For each spring

 Correct velocities for over-elongated springs

Endfor

Parallelize For each mass point

 Compute new positions

Endfor

There are six main for loops suitable for parallelization. The first one is for each spring and

computes the internal forces due to the stiffness of the springs. The second loop goes for each mass

and adds the viscous damping and gravity. As mentioned earlier another type of external forces

55th Science Conference of Ruse University, Bulgaria, 2016

Copyrights© 2016 ISSN 1311-3321 289

used in our simulation is the seaming force applied to assemble the garment from its pattern pieces.

Each seaming line between two patches is composed of "joints" and each joint connects two mass

points or a mass point and an edge (the line connecting two mass-points). So, the third loop of the

pseudo code is for each joint and adds joint forces to connected masses. The next loop computes

the velocity of each mass, checks for collisions, as described below, and modifies velocities to

respond to the detected collision. Loop 5 again goes for each spring and checks if the spring

elongation is above a certain threshold. If this is the case then velocities of the masses, connected

by the spring, are modified as described by Vassilev et al. [5]. The last loop again goes for each

mass point and computes the new positions.

SIMD instruction for accelerating computations

Most current mobile devices are based either on ARM or Intel x86 processors. Both CPU

families support SIMD instructions called NEON on ARM and MMS on x86. The mass-spring

cloth simulation uses quite a few operations on velocities and position which are in fact 3D vectors.

So all operations on vectors (like addition, subtraction, multiplication, division, dot and vector

product) can be implemented using these instructions, which speed up the computations further.

There is no need to use assembly language as most compilers support the so called intrinsic

operations implemented as macros or functions.

Cloth-body collision detection

The mobile GPU can be used to accelerate collision detection as described in [5, 12]. Two

orthographic cameras are placed in front and in the back of the human body and render front and

back depth and normal maps. The depth maps are used for detecting collisions, while the normal

map, in which the XYZ coordinates of the normal vectors are encoded as RGB colours, are used

for collision response. In addition, to reduce the number of texture units, the front and back maps

are placed in a single texture.

Cloth-cloth collision detection

The testing for cloth-cloth collisions is performed only between different garment pieces, as

self-collisions in a single patch is very unlikely to occur in a virtual try-on simulation. The

implemented technique is similar to the bounding box hierarchy one described in [8] with some

modifications. The algorithm checks for collisions between every two cloth patches. The function

for collision detection between two cloth pieces is recursive. First it builds the axis aligned

bounding boxes of the two patches and checks if they overlap. If this is true, every patch is

subdivided in four sub-patches and the function is recursively called to check for collisions

between each pair of patches. In order to accelerate the algorithm exploiting the multicore CPU a

new parallel task is created for each recursive call of the function using #pragma omp task. Once

collision is detected between two cloth faces, repulsive forces are applied to prevent penetration.

RESULTS

The system was implemented using Android SDK and Native Development Toolkit (NDK).

The interface is written in Java and the main simulation algorithms are in C++ for speed.

In order to check performance, the algorithms were also implemented on a laptop PC with

Windows 8.1. Tests were performed on the following configurations:

1) Windows laptop with Intel Core i7-4702MQ quad core (with 8 threads) at 2.2 GHz.

2) Android mobile device with a quad core ARM Cortex-A17 1.7 GHz CPU.

3) Android smart phone with ARM Cortex A7 quad core 1.3 GHz CPU with Mali 400 GPU

supporting OpenGL ES 2.0.

Figure 1 shows the results of simulating a pair of jeans on a virtual female body in four test

cases: laptop CPU without and with parallelization, mobile device (MD) CPU without and with

parallelization. The time was measured in milliseconds for a single iteration for different numbers

of cloth vertices. In this particular case cloth-cloth collision detection was turned off as it is not

Reports Awarded with "Best Paper" Crystal Prize

290 Copyrights© 2016 ISSN 1311-3321

likely to happen for a single garment. The simulation on MD CPU with parallelization is quite fast

and it is faster than PC CPU without parallel threads on the CPU. The simulation times on a smart

mobile phone are not shown, but they are about two times slower than on the MD with ARM

Cortex A17.

Figure 6: Time per iteration vs number of cloth vertices

CONCLUSIONS AND FUTURE WORK

This paper presented a technique for efficient garment simulation on a mobile device. It

implements a mass-spring system with velocity modification to overcome super elasticity and

image space based approach exploiting the GPU for collision detection. The following more

important conclusions can be drawn:

- Today's mobile devices possess sufficient computational power to be used for virtual try-

on garment simulation on a static human body.

- On devices with GPU supporting only OpenGL ES 2.0 the simulation can be accelerated

by parallelizing the computations on the multi-core CPU, using the SIMD instructions

and utilizing the GPU for collision detection.

The experiments showed that dressing a virtual body with a pair of jeans with a reasonable

resolution takes two seconds on a modern smart phone.

55th Science Conference of Ruse University, Bulgaria, 2016

Copyrights© 2016 ISSN 1311-3321 291

REFERENCES

[1] Dinh H.T., Lee C., Niyato D., Wang P. (2012). A Survey of Mobile Cloud Computing:

architecture, Applications, and Approaches. Wireless Communications and Mobile Computing 13

(18): 1587–1611.

[2] Wang Y., Chen I.R., Wang D.C. (2015). A Survey of Mobile Cloud Computing

Applications: Perspectives and Challenges. Wireless Personal Communications 80 (4): 1607-

1623.

[3] Terzopoulos D., Platt J., Barr A., Fleischer K. (1987). Elastically deformable models.

ACM Proceedings of SIGGRAPH 21 (4): 205–214.

[4] Provot X. (1995). Deformation constraints in a mass-spring model to describe rigid cloth

behaviour. Proceedings of Graphics Interface, 141–155.

[5] Vassilev T.I., Spanlang B., Chrysanthou Y. (2001). Fast cloth animation on walking

avatars. Computer Graphics Forum 20 (3): 260–267.

[6] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery BP. (1992). Numerical Recipes

in C, 2nd. edition. Cambridge University Press.

[7] Baraff D. & Witkin A. (1998). Large steps in cloth simulation. Computer Graphics

Proceedings, Annual Conference Series, 43–54.

[8] Provot X. (1997). Collision and self-collision detection handling in cloth model

dedicated to design garments. Proceedings of Graphics Interface, 177–189.

[9] Volino P., Magnenat Thalmann N. (1995). Collision and self-collision detection:

Efficient and robust solutions for highly deformable surfaces. Computer Animation and Simulation

1995, Terzopoulos D, Thalmann D, (Eds.), Springer-Verlag, 55–65.

[10] Baciu G., Wong W. S., Sun H. (1999). Recode: an image-based collision detection

algorithm. The Journal of Visualization and Computer Animation 10 (4): 181–192.

[11] Myszkowski K., Okunev O.G., Kunii T.L. (1995). Fast collision detection between

complex solids using rasterizing graphics hardware. The Visual Computer 11 (9): 497–512.

[12] Vassilev T.I., Spanlang B. (2012). Fast GPU Garment Simulation and Collision

Detection, 20th International Conference on Computer Graphics, Visualization and Computer

Vision WSCG 2012, Plzen, 19-26.

[13] Jeon J.H., Min S.D., Kong M. (2015). Implementation of Cloth Simulation Using

Parallel Computing on Mobile Device. International Journal of Electrical and Computer

Engineering 5 (3): 562-568.

