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Abstract: Soft-core processors have become a reasonable alternative for embedded system design due to their 

flexibility and the possibility to integrate with custom logic to build system-on-chip applications. While a wide variety 
of commercial soft-core processor implementations exists, a minority of them are suitable for teaching purposes. This 
paper presents the design and implementation of a simple soft-core stack processor as a part of authors’ effort to 
contribute to the learning process in processor design and computer architecture fields. The design and 
implementation steps, as well as future extensions, are discussed. 
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INTRODUCTION 
Soft-core processors are processors described in Hardware Description Language (HDL), 

which can be synthesized and mapped to the fabric of Field Programmable Gate Arrays (FPGAs). 
Examples include Nios II (Altera, 2016), Xilinx MicroBlaze (Xilinx, 2017), LEON SPARC 
(Cobham Gaisler, 2017), etc. These processors have become a reasonable alternative for embedded 
system design due to their flexibility and the possibility to integrate with custom logic to build 
System-on-Chip (SoC) applications.  

While a wide variety of sophisticated commercial soft-core processor implementations 
exists, a minority of them are suitable for teaching purposes. Therefore, to support the learning 
process, a number of educational processors have been developed. A partial list includes the 
traditional in computer architecture education processor MIPS (Patterson, D. A. & Hennessy, J. 
L., 2013) with its HDL presentation (Harris, D. & Harris, S., 2012), 16-bit RISC processor Sweet-
16 (Angelov, V. & Lindenstruth, V., 2009), 16-bit accumulator based processor BIP (Pereira et al. 
2012), 8-bit RISC soft-core processor (Zavala et al. 2015), etc. 

To facilitate the teaching in processor design and computer architecture topics, we designed 
simplified soft-core processors for the three main architecture types – accumulator, stack and 
register. This paper presents one of them – a minimalistic experimental stack processor (MESP) 
with Harvard architecture. In the next sections, some details of the design and implementation 
steps are outlined, and future extensions are discussed. 
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EXPOSITION 
The tools used for modelling, simulation and implementation of the processor include Xilinx 

ISE and Spartan-3E Starter Kit board. 
The MESP uses separate instruction and data spaces. Both instruction and data addresses are 

8-bit wide. The stack contains four registers (StackA, StackB, StackC and StackD). All registers 
are 8-bit wide except the top of the stack (StackA), which is complemented by a carry flag (CF). 
For input/output, two 8-bit ports (InPort, OutPort) are provided.  

Instruction set design 
The simplified instruction set consists of just seven instructions: 
 Data movement:  

- PUSH – load the content of memory location/immediate operand into StackA;  
- POP  – store the content of StackA in a memory location; 
- INP – read data from the input port and stores them in StackA; 
- OUTP – write the content of StackA to the output port; 

 Arithmetic and logic operations: 
- ADD – add the contents of StackA and StackB;  
- NOR – bitwise negated OR of  the contents of StackA and StackB;  

 Conditional branch: 
- JCC – branch if carry flag cleared. 

Although the stack machine has zero-operand architecture, absolute and immediate 
addressing modes were implemented for the PUSH instruction, as well as absolute addressing for 
the POP.  

The instruction length is fixed to 12-bit, also single instruction format is used (Fig. 1).  
 

 
Fig. 1. MESP instruction format 

 
While PUSH and INP append a new item onto the top of the stack and move the stack 

“down” (StackD ← StackC ← StackB ← StackA ← [new item]), POP and OUTP move the stack 
“up” (StackA ← StackB ← StackC ← StackD ← 0). Arithmetic and logic instructions operate on 
the top two elements of stack, leaving the result on StackA and moving the content of the stack 
“up” (StackB ← StackC ← StackD ← 0). 

Table 1 summarizes the instructions with their corresponding syntax, encoding and function. 
 

Table 1. MESP instruction set 

Instruction Syntax Encoding Function Note 

PUSH PUSH address 0010[address] StackA ← mem[address]  PUSH #imm 0011[imm] StackA← imm 
POP POP address 0100[address] mem[address] ← StackA  
NOR NOR  011000000000 StackA ← StackA nor StackB  
ADD ADD  100000000000 StackA ← StackA + StackB Affect CF 
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INP INP 101000000000 StackA ← InPort  
OUTP OUTP 110000000000 OutPort ← StackA  
JCC JCC address 1110[address] PC ← address if CF=0 Clear CF 
 
The JCC instruction checks the CF to determine whether to branch. This instruction always 

clears the CF, so two consecutive JCC instructions form an unconditional jump. Similarly, new 
instructions can be synthesized from others (Table 2). 

 
Table 2. Synthesized instructions 

Instruction Syntax Description  
CLR PUSH #FFh, NOR  Clear StackA 
NOT PUSH #0, NOR  Invert the content of StackA 
JMP JCC dest, JCC dest Unconditional jump to dest 
JCS JCC ($ + 2), JCC dest Jump to dest if CF=1 ($ is the current PC)  

SUB PUSH #1, PUSH mem, PUSH #0, 
NOR, ADD, ADD  

Subtract content of memory location mem 
from the content of StackA 

 

Datapath 
The datapath includes the black marked blocks shown in Fig 2. 

 

 
Fig. 2. MESP block diagram 

 
The instruction fetch–execute cycle implies four steps, numbered in Fig. 2: 
1) The instruction code retrieved from the program memory location, specified by the 

program counter (PC), is copied into the instruction register (IR). Then the instruction is decoded 
by the control unit using the four most significant bits of the IR (IR[11:8]). Depending on the 
addressing mode, the last eight bits (IR[7:0]) specify either an address of the data memory (for 
instructions PUSH or POP) or immediate value (only for PUSH). 
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2) Read/write from/to data memory. Read operation takes place only for PUSH instruction 
with absolute addressing - as a result, the output from the data memory (Data) is passed to the 
input of the StackA. With a POP instruction, the StackA content is stored to the data memory. 

3) The PC is either incremented by 1 or loaded with the address from the JC instruction if 
CF=0.  

4) The result of ADD/NOR operations is stored back into StackA. For the PUSH instruction 
with immediate addressing StackA is loaded with the 8-bit value from IR[7:0]. For input/output 
operations (IN and OUT instructions) data is exchanged between StackA and the ports. At this 
step, depending on the instruction type, the content of the stack is moved “up” or “down”. 

The program and data memory are implemented using the on-chip block RAM modules 
available in the Spartan-3E FPGA devices. The block RAM modules are synchronous with 
read/write operations performed at the rising clock edge. Taking into consideration both the 
datapath diagram and the fetch–execute steps, it is concluded that the instruction cycle can be 
accomplished within three edges of the clock signal.  

 

 
Fig. 3. Instruction cycle timing 

 
To achieve this timing, first, the output register of the program memory plays a role of IR, 

and second, the clock signal of data memory is inverted. Thus, each instruction is executed in one 
clock cycle (Fig. 3), having the steps 2 and 3 of the current instruction as well as step 4 of the 
current and step 1 of the next instruction overlapped. 

 
Control unit 
The control unit was designed according to the states and operations defined in Table 3. 

Here, input signals of the state machine include opcode and addressing mode fields of the 
instruction IR[11:8], as well as flag CF.  

Table 3. Control unit states and operations 

State (code) Register-transfer operation Next state 
FETCH_STATE  
(000) 

IR ← mem[PC] 
Data ← mem[IR[7:0]] Determined by IR[11:9] 

PUSH_STATE 
(001) 

StackD ← StackC ← StackB ← StackA 
StackA← Data if IR[8] = 0 
StackA← IR[7:0] if IR[8] = 1 
PC ← PC + 1 

FETCH_STATE 

POP_STATE 
(010) 

mem[IR[7:0]] ← StackA 
StackA ← StackB ← StackC ← StackD 
PC ← PC + 1 

FETCH_STATE 

NOR_STATE 
(011) 

StackA← StackAnorStackB 
StackB ← StackC ← StackD 
PC ← PC + 1 

FETCH_STATE 
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ADD_STATE 
(100) 

StackA ← StackA + StackB 
StackB ← StackC ← StackD 
PC ← PC + 1 

FETCH_STATE 

INP_STATE 
(101) 

StackD ← StackC ← StackB ← StackA 
StackA← InPort; 
PC ← PC + 1 

FETCH_STATE 

OUTP_STATE 
(110) 

OutPort ← StackA 
StackA ← StackB ← StackC ← StackD 
PC ← PC + 1 

FETCH_STATE 

JCC_STATE 
(111) 

PC ← IR[7:0] if CF = 0, PC ← PC + 1 if CF = 
1 
CF ← 0 

FETCH_STATE 

 
To simplify the implementation, the state codes specified correspond to the value of opcode 

field. Thus, while the first state of the instruction cycle is FETCH_STATE, the next state is 
determined directly by bits 11:9 of the IR. Similarly, at the execution phase the current state code 
directly controls the arithmetic logic unit (ALU). 

VHDL modelling and simulation 
The datapath and control unit of MESP were described through behavioral VHDL approach. 

Then program and data memory were instantiated via parameterized FPGA block RAM modules. 
The final processor was composed using an enclosing VHDL entity that connects datapath, control 
unit and memories together at the structural level. Fig. 4 shows a fragment of VHDL process, 
describing the execution phase of the instruction. 

 

 
Fig. 4. A fragment of VHDL code 

 
To test the correctness of all instructions, various software routines were created. For, 

example, Fig. 5 shows a simulation trace of a program that calculates the greatest common divisor 
of two input numbers. 
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Fig. 5. Simulation trace of calculating the greatest common divisor of A and B (A=24, B=18) 

 
The completed stack processor was implemented and tested on Spartan-3E Starter Kit. With 

provided clock from the on-board 50 MHz clock oscillator the instruction execution rate is 50 
MIPS. The utilization of the target XC3S500E device reported by Xilinx ISE is less than 1%. 

Assembler 
The program memory of the processor must be initialized with the binary code of 

instructions prior to the synthesis phase.  
To support the programming process, a simple assembler was developed. Fig. 6 shows the 

grammar of the MESP assembly language.  
 

<StackAssemblyProg> → <Line> <StackAssemblyProg> | <null> 
<Line> → <Directive> EOL | <LabelledInstruction> EOL 
<Directive> → IDENT EQU CONST 
<LabelledInstruction> → LABEL : <LabelledInstruction> | <Instruction> 
<Instruction> → PUSH <Oper> | POP <Expr> | NOR | ADD | INP | OUTP | JCC LABEL 
<Oper> → <Expr> | <ImmExpr> 
<ImmExpr> → # <Expr> 
<Expr> → IDENT | CONST 

Fig. 6. MESP assembly language grammar 
 

The output of the assembler is a VHDL description of the program memory with the binary 
code of instructions integrated in its initialization sections. 

 
CONCLUSION 
This paper presents the design and implementation of simple soft-core processor as a part of 

authors’ effort to contribute to the learning process in processor design and computer architecture 
fields. 

The presented processor is as simple as possible to give the students an insight into the design 
steps, as well as data flow within the instruction execution cycle. Despite the simplicity and 
limitations, it can be considered as a basis for various experiments and modifications: extension 
of the instruction set, the address spaces and the register width; support of interrupts and 
subroutines; implementation of multiprocessor systems within single FPGA, etc. 

We expect the presented processor to be useful for students in their comprehension of the 
processor design and functioning. 
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