
56th Science Conference of Ruse University, Bulgaria, 2017

Copyrights© 2017 ISBN 978-954-712-733-3 (Print) 79

FRI-2G.303-1-CST-02

AN EXPERIMENTAL SOFT-CORE STACK PROCESSOR

Princ. Assist. Nikolay Kostadinov, PhD
Department of Computer Systems and Technologies
“Angel Kanchev” Univesity of Ruse
Tel.: +359 82 888 674
E-mail: nkostadinov@ecs.uni-ruse.bg

Assoc. Prof. Milen Loukantchevsky, PhD, IEEE Member, ACM Member
Department of Computer Systems and Technologies
“Angel Kanchev” Univesity of Ruse
Tel.: +359 82 888 674
E-mail: mil@ieee.org

Princ. Assist. Hovanes Avakyan, PhD
Department of Computer Systems and Technologies
“Angel Kanchev” Univesity of Ruse
Tel.: +359 82 888 674
E-mail: havakian@ecs.uni-ruse.bg

Abstract: Soft-core processors have become a reasonable alternative for embedded system design due to their

flexibility and the possibility to integrate with custom logic to build system-on-chip applications. While a wide variety
of commercial soft-core processor implementations exists, a minority of them are suitable for teaching purposes. This
paper presents the design and implementation of a simple soft-core stack processor as a part of authors’ effort to
contribute to the learning process in processor design and computer architecture fields. The design and
implementation steps, as well as future extensions, are discussed.

Keywords: Soft-core processor, Processor design, Computer architecture, VHDL model, FPGA

INTRODUCTION
Soft-core processors are processors described in Hardware Description Language (HDL),

which can be synthesized and mapped to the fabric of Field Programmable Gate Arrays (FPGAs).
Examples include Nios II (Altera, 2016), Xilinx MicroBlaze (Xilinx, 2017), LEON SPARC
(Cobham Gaisler, 2017), etc. These processors have become a reasonable alternative for embedded
system design due to their flexibility and the possibility to integrate with custom logic to build
System-on-Chip (SoC) applications.

While a wide variety of sophisticated commercial soft-core processor implementations
exists, a minority of them are suitable for teaching purposes. Therefore, to support the learning
process, a number of educational processors have been developed. A partial list includes the
traditional in computer architecture education processor MIPS (Patterson, D. A. & Hennessy, J.
L., 2013) with its HDL presentation (Harris, D. & Harris, S., 2012), 16-bit RISC processor Sweet-
16 (Angelov, V. & Lindenstruth, V., 2009), 16-bit accumulator based processor BIP (Pereira et al.
2012), 8-bit RISC soft-core processor (Zavala et al. 2015), etc.

To facilitate the teaching in processor design and computer architecture topics, we designed
simplified soft-core processors for the three main architecture types – accumulator, stack and
register. This paper presents one of them – a minimalistic experimental stack processor (MESP)
with Harvard architecture. In the next sections, some details of the design and implementation
steps are outlined, and future extensions are discussed.

Reports Awarded with "Best Paper" Crystal Prize‘17

80 Copyrights© 2017 ISBN 978-954-712-733-3 (Print)

EXPOSITION
The tools used for modelling, simulation and implementation of the processor include Xilinx

ISE and Spartan-3E Starter Kit board.
The MESP uses separate instruction and data spaces. Both instruction and data addresses are

8-bit wide. The stack contains four registers (StackA, StackB, StackC and StackD). All registers
are 8-bit wide except the top of the stack (StackA), which is complemented by a carry flag (CF).
For input/output, two 8-bit ports (InPort, OutPort) are provided.

Instruction set design
The simplified instruction set consists of just seven instructions:
 Data movement:

- PUSH – load the content of memory location/immediate operand into StackA;
- POP – store the content of StackA in a memory location;
- INP – read data from the input port and stores them in StackA;
- OUTP – write the content of StackA to the output port;

 Arithmetic and logic operations:
- ADD – add the contents of StackA and StackB;
- NOR – bitwise negated OR of the contents of StackA and StackB;

 Conditional branch:
- JCC – branch if carry flag cleared.

Although the stack machine has zero-operand architecture, absolute and immediate
addressing modes were implemented for the PUSH instruction, as well as absolute addressing for
the POP.

The instruction length is fixed to 12-bit, also single instruction format is used (Fig. 1).

Fig. 1. MESP instruction format

While PUSH and INP append a new item onto the top of the stack and move the stack

“down” (StackD ← StackC ← StackB ← StackA ← [new item]), POP and OUTP move the stack
“up” (StackA ← StackB ← StackC ← StackD ← 0). Arithmetic and logic instructions operate on
the top two elements of stack, leaving the result on StackA and moving the content of the stack
“up” (StackB ← StackC ← StackD ← 0).

Table 1 summarizes the instructions with their corresponding syntax, encoding and function.

Table 1. MESP instruction set

Instruction Syntax Encoding Function Note

PUSH PUSH address 0010[address] StackA ← mem[address] PUSH #imm 0011[imm] StackA← imm
POP POP address 0100[address] mem[address] ← StackA
NOR NOR 011000000000 StackA ← StackA nor StackB
ADD ADD 100000000000 StackA ← StackA + StackB Affect CF

56th Science Conference of Ruse University, Bulgaria, 2017

Copyrights© 2017 ISBN 978-954-712-733-3 (Print) 81

INP INP 101000000000 StackA ← InPort
OUTP OUTP 110000000000 OutPort ← StackA
JCC JCC address 1110[address] PC ← address if CF=0 Clear CF

The JCC instruction checks the CF to determine whether to branch. This instruction always

clears the CF, so two consecutive JCC instructions form an unconditional jump. Similarly, new
instructions can be synthesized from others (Table 2).

Table 2. Synthesized instructions

Instruction Syntax Description
CLR PUSH #FFh, NOR Clear StackA
NOT PUSH #0, NOR Invert the content of StackA
JMP JCC dest, JCC dest Unconditional jump to dest
JCS JCC ($ + 2), JCC dest Jump to dest if CF=1 ($ is the current PC)

SUB PUSH #1, PUSH mem, PUSH #0,
NOR, ADD, ADD

Subtract content of memory location mem
from the content of StackA

Datapath
The datapath includes the black marked blocks shown in Fig 2.

Fig. 2. MESP block diagram

The instruction fetch–execute cycle implies four steps, numbered in Fig. 2:
1) The instruction code retrieved from the program memory location, specified by the

program counter (PC), is copied into the instruction register (IR). Then the instruction is decoded
by the control unit using the four most significant bits of the IR (IR[11:8]). Depending on the
addressing mode, the last eight bits (IR[7:0]) specify either an address of the data memory (for
instructions PUSH or POP) or immediate value (only for PUSH).

Reports Awarded with "Best Paper" Crystal Prize‘17

82 Copyrights© 2017 ISBN 978-954-712-733-3 (Print)

2) Read/write from/to data memory. Read operation takes place only for PUSH instruction
with absolute addressing - as a result, the output from the data memory (Data) is passed to the
input of the StackA. With a POP instruction, the StackA content is stored to the data memory.

3) The PC is either incremented by 1 or loaded with the address from the JC instruction if
CF=0.

4) The result of ADD/NOR operations is stored back into StackA. For the PUSH instruction
with immediate addressing StackA is loaded with the 8-bit value from IR[7:0]. For input/output
operations (IN and OUT instructions) data is exchanged between StackA and the ports. At this
step, depending on the instruction type, the content of the stack is moved “up” or “down”.

The program and data memory are implemented using the on-chip block RAM modules
available in the Spartan-3E FPGA devices. The block RAM modules are synchronous with
read/write operations performed at the rising clock edge. Taking into consideration both the
datapath diagram and the fetch–execute steps, it is concluded that the instruction cycle can be
accomplished within three edges of the clock signal.

Fig. 3. Instruction cycle timing

To achieve this timing, first, the output register of the program memory plays a role of IR,

and second, the clock signal of data memory is inverted. Thus, each instruction is executed in one
clock cycle (Fig. 3), having the steps 2 and 3 of the current instruction as well as step 4 of the
current and step 1 of the next instruction overlapped.

Control unit
The control unit was designed according to the states and operations defined in Table 3.

Here, input signals of the state machine include opcode and addressing mode fields of the
instruction IR[11:8], as well as flag CF.

Table 3. Control unit states and operations

State (code) Register-transfer operation Next state
FETCH_STATE
(000)

IR ← mem[PC]
Data ← mem[IR[7:0]] Determined by IR[11:9]

PUSH_STATE
(001)

StackD ← StackC ← StackB ← StackA
StackA← Data if IR[8] = 0
StackA← IR[7:0] if IR[8] = 1
PC ← PC + 1

FETCH_STATE

POP_STATE
(010)

mem[IR[7:0]] ← StackA
StackA ← StackB ← StackC ← StackD
PC ← PC + 1

FETCH_STATE

NOR_STATE
(011)

StackA← StackAnorStackB
StackB ← StackC ← StackD
PC ← PC + 1

FETCH_STATE

56th Science Conference of Ruse University, Bulgaria, 2017

Copyrights© 2017 ISBN 978-954-712-733-3 (Print) 83

ADD_STATE
(100)

StackA ← StackA + StackB
StackB ← StackC ← StackD
PC ← PC + 1

FETCH_STATE

INP_STATE
(101)

StackD ← StackC ← StackB ← StackA
StackA← InPort;
PC ← PC + 1

FETCH_STATE

OUTP_STATE
(110)

OutPort ← StackA
StackA ← StackB ← StackC ← StackD
PC ← PC + 1

FETCH_STATE

JCC_STATE
(111)

PC ← IR[7:0] if CF = 0, PC ← PC + 1 if CF =
1
CF ← 0

FETCH_STATE

To simplify the implementation, the state codes specified correspond to the value of opcode

field. Thus, while the first state of the instruction cycle is FETCH_STATE, the next state is
determined directly by bits 11:9 of the IR. Similarly, at the execution phase the current state code
directly controls the arithmetic logic unit (ALU).

VHDL modelling and simulation
The datapath and control unit of MESP were described through behavioral VHDL approach.

Then program and data memory were instantiated via parameterized FPGA block RAM modules.
The final processor was composed using an enclosing VHDL entity that connects datapath, control
unit and memories together at the structural level. Fig. 4 shows a fragment of VHDL process,
describing the execution phase of the instruction.

Fig. 4. A fragment of VHDL code

To test the correctness of all instructions, various software routines were created. For,

example, Fig. 5 shows a simulation trace of a program that calculates the greatest common divisor
of two input numbers.

Reports Awarded with "Best Paper" Crystal Prize‘17

84 Copyrights© 2017 ISBN 978-954-712-733-3 (Print)

Fig. 5. Simulation trace of calculating the greatest common divisor of A and B (A=24, B=18)

The completed stack processor was implemented and tested on Spartan-3E Starter Kit. With

provided clock from the on-board 50 MHz clock oscillator the instruction execution rate is 50
MIPS. The utilization of the target XC3S500E device reported by Xilinx ISE is less than 1%.

Assembler
The program memory of the processor must be initialized with the binary code of

instructions prior to the synthesis phase.
To support the programming process, a simple assembler was developed. Fig. 6 shows the

grammar of the MESP assembly language.

<StackAssemblyProg> → <Line> <StackAssemblyProg> | <null>
<Line> → <Directive> EOL | <LabelledInstruction> EOL
<Directive> → IDENT EQU CONST
<LabelledInstruction> → LABEL : <LabelledInstruction> | <Instruction>
<Instruction> → PUSH <Oper> | POP <Expr> | NOR | ADD | INP | OUTP | JCC LABEL
<Oper> → <Expr> | <ImmExpr>
<ImmExpr> → # <Expr>
<Expr> → IDENT | CONST

Fig. 6. MESP assembly language grammar

The output of the assembler is a VHDL description of the program memory with the binary
code of instructions integrated in its initialization sections.

CONCLUSION
This paper presents the design and implementation of simple soft-core processor as a part of

authors’ effort to contribute to the learning process in processor design and computer architecture
fields.

The presented processor is as simple as possible to give the students an insight into the design
steps, as well as data flow within the instruction execution cycle. Despite the simplicity and
limitations, it can be considered as a basis for various experiments and modifications: extension
of the instruction set, the address spaces and the register width; support of interrupts and
subroutines; implementation of multiprocessor systems within single FPGA, etc.

We expect the presented processor to be useful for students in their comprehension of the
processor design and functioning.

56th Science Conference of Ruse University, Bulgaria, 2017

Copyrights© 2017 ISBN 978-954-712-733-3 (Print) 85

REFERENCES
Altera (2016). Nios II Classic Processor Reference Guide. Available at:
https://www.altera.com/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf (Accessed: 18

Sep 2017).
Angelov, V. & Lindenstruth, V. (2009). The educational processor Sweet-16. International

Conference on Field Programmable Logic and Applications. Prague, Czech Republic, 31 Aug.-2
Sept. 2009. IEEE, pp. 555–559.

Cobham Gaisler (2017). LEON4 Processor. Available at:
http://www.gaisler.com/index.php/products/processors/leon4 (Accessed: 18 Sep 2017).

Harris, D. & Harris, S. (2012). Digital Design and Computer Architecture. 2nd ed. Morgan
Kaufmann.

Patterson, D. A. & Hennessy, J. L. (2013). Computer Organization and Design: The
Hardware/Software Interface 5th ed. Morgan Kaufmann Publishers.

Pereira, M.C., Viera, P.V., Raabe, A.L., & Zeferino, C.A. (2012). A basic processor for
teaching digital circuits and systems design with FPGA. VIII Southern Conference on
Programmable Logic. 20-23 March 2012, Bento Goncalves, Spain. IEEE, pp. 1-6.

Xilinx (2017). MicroBlaze Processor Reference Guide. Available at:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug984-vivado-
microblaze-ref.pdf (Accessed: 16 Sep 2017).

Zavala, H.A., Nieto, C.O., Ruelas, H.J.A., & Dominguez, C.A.R. (2015). Design of a
General Purpose 8-bit RISC Processor for Computer Architecture Learning. Computación y
Sistemas, 19(2), pp. 371-385.

