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Abstract: The paper investigates the robust stability of an embedded robust controller for optimal reference 

tracking of electrohydraulic steering systems. The regulator is sinthesized on the base of multivariable system 

identification and quadratic cost function. A Kalman filtering algorithm is used for the state estimation. In order to 

describe the system in robust control framework we introduce a small uncertain element into the model from 

identification in the form of input multiplicative uncertainty. Then the system is represented as a 𝑀 − 𝛥 

interconnection which allows to calculate the structured singular value (𝜇) of the closed loop system with the linear 

quadratic regulator. This singular value is a measure of the loop stability in presence of bounded variations in the 

model characteristics in frequency domain or in its parameters. Therefore the present paper proves that the closed 

loop system keeps its stability in presence of unmodelled dynamic effects caused for example by the inherent 

nonlinearities in the hydraulic steering units. 

Keywords: Linear-quadratic regulator (LQR), Kalman filter, Robust stability, Steering system. 

 
INTRODUCTION 

The need for mobile machines with automated remote control is a determining factor for the 

development of the built-in electrohydraulic steering systems. A basic device in these systems is 

an electrohydraulic steering unit (EHSU). Modern EHSU enable reconciliation of two modes of 

steering depending on the control action: mechanical - through the steering wheel and digital - an 

electronic joystick or GPS signal. In this way, besides meeting the requirements of the safety 

standards, new advantages are gained in terms of precise remote control and providing a variable 

steering ratio between the steering wheel and the steered wheels based on dedicated control 

modules (Danfoss, 2016). An example of this is the well-known Danfoss PVE type of 

electrohydraulic control modules (EHCM). It has an electro-hydraulic system consisting of four 
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two-way two-position valves of small size dimensionally connected in parallel, which serve for 

pilot hydraulic control of a proportional spool valve (with position feedback) which determines 

the direction of movement of the executive servo-cylinder. This requires the installation of an 

efficient embedded control system guaranteeing the quality of the entire electrohydraulic system. 

The main purpose of the present work is to synthesize and implement a control device of the 

EHSU to ensure robust stability and quality of the control system. In order to achieve this goal, 

based on the identification model obtained, a linear-quadratic-Gaussian (LQG) regulator with 

integrated action is synthesized. Robust stability of the management system has been investigated 

using the developed model of EHSU with input multiplicative uncertainty. The synthesized 

regulator is implemented in a 32-bit microcontroller on a test bench for investigation of electro-

hydraulic steering devices. A number of experiments have been carried out with the developed 

EHSU control system. 

 

Experimental system layout 

Experimental studies were performed on a laboratory test bench for electrohydraulic steering 

systems based on the OSPE 200 LSRM, taking into account the technical specifications of 

manufacturers of such systems and standards in their design - EU Machinery Directive 2006/42 / 

EC and ISO 13849-1 (Weber, J., 2016).  

Fig. 1 shows the hydraulic scheme of the EHCM for the control of the EHSU in digital mode.  

 

 
Fig. 1. Hydraulic diagram of EHCM  

 

Design of LQG regulator for control EHCM 

In order to design an LQG regulator there is necessary to have a linear state-space model of 

the plant. In this paper we use such model which is estimated with identification from experimental 

data (Mitov, Al., 2018). The model we have is  
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𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐾𝑣𝑣(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝑣(𝑘)

, 𝐴 = [
0.8769 −0.3987 0.3986
0 0 1

−0.1666 −0.5099 1.509
], 

    (1) 

𝐵 = [
−0.0043
0.0011
0.0021

] , 𝐶 = [
1 0 0
0 1 0

] , 𝐷 = [
0
0
], 𝐾𝑣 = [

0.1112 −0.06214
−0.09525 1.55
−0.2003 1.897

] 

where 𝑥(𝑘) = [𝑥1 𝑥2 𝑥3 ]𝑇 is a vector with the state variables,  
𝑢(𝑘) is the input signal, 𝑦(𝑘) = [𝑦𝑝𝑟𝑒𝑠 𝑦𝑝𝑜𝑠]𝑇 is the output signal, 𝑣(𝑘) is the residual error from 

the model, and 𝐴, 𝐵, 𝐶, 𝐷. 𝐾𝑣 are matrices with suitable dimensions. The firs output of the model 

(1) is the measured position of the piston, and the second output is the measured pressure drop 

across the cylinder chambers.  

In order to achieve reference trajectory tracking we have designed the LQG regulator with 

included integral compoment (Goodwin, G., 2001). Therefore the determinicstic part of the model 

(1) is extended with the additional state 𝑥𝑖.  This additional state is an ingegral of the position 

tracking error 

 𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑇𝑠𝑒𝑣(𝑘) = 𝑥𝑖(𝑘) + 𝑇𝑠(𝑦𝑟𝑒𝑓(𝑘) − 𝑦𝑝𝑜𝑠(𝑘)), (2) 

where 𝑦𝑟𝑒𝑓(𝑘) is the reference. By combining equations (1) and (2) there we have the following 

representationtion of the extended system. 

 �̅�(𝑘 + 1) = �̅��̅�(𝑘) + �̅�𝑢(𝑘) + �̅�𝑦𝑟𝑒𝑓(𝑘),

𝑦(𝑘) = 𝐶̅�̅�(𝑘),
, (3) 

 
�̅�(𝑘) = |

𝑥(𝑘)

𝑥𝑖(𝑘)
| , �̅� = |

𝐴 0
−𝑇𝑠𝐶 1

| , �̅� = |
𝐵
0
| , 𝐶̅ = |𝐶 0|, �̅� = |

0
𝑇𝑠
| (4) 

The optimal control action is 

 𝑢(𝑘) = −�̅��̅�(𝑘), �̅� = [𝐾𝑐 −𝐾𝑖], (5) 

where 𝐾𝑐 is a matrix of the proportional gains on each state and is 𝐾𝑖 is the integral gain. The 

matrix of the regulator �̅� then is calculated from 

 �̅� = (𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝐴(𝑘) = −�̅��̅�(𝑘), �̅� = [𝐾𝑐 −𝐾𝑖], (6) 

where 𝑃 is the positive definite solution of the following Riccati equation 

 
𝐴𝑇𝑃𝐴 − 𝑃 − 𝐴𝑇𝑃𝐵(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝐴 + 𝑄 = 0 (7) 

  The optimal regulator is calculated for fixed values of the matrices 

 

𝑄 = [

× 104 0 0 0
0 104 0 0
0 0 104 0
0 0 0 0

], 𝑅 = 5000 (8) 

Since the state 𝑥(𝑡) of the plant (1) is not cannot be directly measured, the optimal control 

action (5) is implemented as 

 𝑢(𝑘) = −𝐾𝑐�̂�(𝑘) + 𝐾𝑖𝑥𝑖(𝑘), (9) 

where �̂�(𝑘) is the estimate of 𝑥(𝑡). It is calculated with a discrete Kalman filter 

 �̂�(𝑘 + 1) = 𝐴�̂�(𝑘) + 𝐵𝑢(𝑘) + 𝐾𝑓(𝑦(𝑘 + 1) − 𝐶𝐵𝑢(𝑘) − 𝐶𝐴�̂�(𝑘)) (10) 

The matrix of the filter fK is determined as 

 𝐾𝑓 = 𝐷𝑓𝐶
𝑇(𝐶𝐷𝐶𝑇 + 10−4𝐼2)

−1, (11) 
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where 𝐼2 is a second order unit matrix and 𝐷𝑓 is a positive definite solution of the Riccati equation 

 
𝐴𝐷𝑓𝐴

𝑇 −𝐷𝑓 − 𝐴𝐷𝑓𝐶
𝑇(𝐶𝐷𝐶𝑇 + 10−4𝐼2)

−1𝐶𝐷𝑓𝐴
𝑇 + 𝐾𝑣𝐷𝑣𝐾𝑣

𝑇 = 0.  (12) 

The matrix 𝐷𝑣 = [
108.97 0
0 27.44

] is a noise variance 𝑣(𝑘). 

 

Robust stability of the designed LQG 

The robustness of a system means that it retains certain properties, regardless of the 

variations in the parameters of its internal elements within the permissible limits. It is of interest 

to investigate whether the closed system with the linear quadratic regulator will retain its stability 

in the presence of variations in the parameters in the matrix 𝐵, which characterize the effect of the 

control signal on the object. This is due to the presence of an dead-band in the response of the 

main directional valve caused by the positive overlap of its edges which is designed in this way 

for safety considerations. This valve controls directly the direction of movement of the steering 

cylinder. There is assumed a 30% uncertainty in the matrix 𝐵,  

 

�̃� = 𝐵 + (

𝛿1 0 0
0 𝛿2 0
0 0 𝛿3

) |0.3𝐵|, (13) 

where 𝛿1, 𝛿2, 𝛿3 ∈ [−1,1] are normalized unsertain scalar variables independent of each other. For 

certain specific values of the uncertain elements, a single implementation of the system is obtained. 

That's why the uncertain system becomes  

 
{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + �̃�𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)
 (14) 

is described by a family of characteristics corresponding to a different choice of values for 

uncertain variables. Fig. 6 present the transient responses in pressure drop and in position of the 

uncertain open system. As can be seen, the uncertainty leads to a variation in the static gain of the 

system. Fig. 7 shows the amplitude-frequency responses of the open loop for the pressure and 

position. The influence of the introduced uncertainty upon the pressure channel is significantly 

greater than upon the position channel. To investigate the effect of the uncertainty on the closed 

loop with the linear quadratic regulator we use the following expressions 

 

{
 
 

 
 (

𝑥(𝑘 + 1)
𝑥𝐿𝑄𝐺(𝑘 + 1)

) = (
𝐴 �̃�𝐶𝐿𝑄𝐺

−𝐵𝐿𝑄𝐺𝐶 𝐴𝐿𝑄𝐺
)(

𝑥(𝑘)
𝑥𝐿𝑄𝐺(𝑘)

) + 𝐵𝐿𝑄𝐺 (
0
𝑟(𝑘)

)

𝑦(𝑘) = (𝐶 0) (
𝑥(𝑘)

𝑥𝐿𝑄𝐺(𝑘)
)

, (15) 

where 𝐴𝐿𝑄𝐺 , 𝐵𝐿𝑄𝐺 , 𝐶𝐿𝑄𝐺 is the state-space representation of the designed linear-quadratic regulator 

and 𝑥𝐿𝑄𝐺 is its internal state vector. There can be observed that the uncertain elements from the 

open-loop matrix �̃� are expressed also in the matrix 𝐴𝑐 of the closed loop. Hence the introduced 

uncertainty can influence the stability of the loop. 
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Fig. 6. Step response of uncertainty open loop 

system 

 

Fig. 7. Frequency response 

Fig. 8 shows the family of transient response of the closed loop in position, and Fig. 9 shows 

the amplitude-frequency response of the closed system with respect to the signal r. The important 

thing here is that the closed-loop system retains its performance despite the presence of parametric 

disturbances. To investigate the robust stability of the closed loop system we use the following 

representation 

 

{
 

 (
𝑥(𝑘 + 1)

𝑥𝐿𝑄𝐺(𝑘 + 1)
) = (

𝐴 𝐵𝐶𝐿𝑄𝐺
−𝐵𝐿𝑄𝐺𝐶 𝐴𝐿𝑄𝐺

) (
𝑥(𝑘)

𝑥𝐿𝑄𝐺(𝑘)
) + (

0 I
0 0

) 𝑢Δ

𝑦Δ = (
0 0.3|𝐵|𝐶𝐿𝑄𝐺
0 0

) (
𝑥(𝑘)

𝑥𝐿𝑄𝐺(𝑘)
)

, (16) 

where 𝑢Δ = Δ 𝑦Δ and Δ = 𝑑𝑖𝑎𝑔(𝛿1, 𝛿2, 𝛿3). This representation is widely known as 𝑀− Δ 

structure in robust control theory (Petkov, P., 2018) and decompose the uncertain system to a 

nominal deterministic part and an uncertain matrix. In order to characterize the robust stability of 

the system there is defined the structured singular value 𝜇 as a reciprocal of the minimal as norm 

uncertainty Δ, which would make the system internally unstable 

 𝜇Δ(𝑀) = sup
𝜔

1

min {‖Δ‖∞| det(𝑗𝜔𝐼 − 𝐴𝑐(Δ)) = 0}
 (17) 

The robust stability of the closed loop system for the entire range of uncertain perturbatuions i.e. 

‖Δ‖∞ ≤ 1 is equivalent to 𝜇Δ(𝑀) < 1. From Fig. 10, we can determined an upper bound for the  
1

min {‖Δ‖∞|det(𝑗𝜔𝐼−𝐴𝑐(Δ))=0}
. It can be seen that the upper bound of the structured singular number is 

about 0.3, which confirms that the closed uncertain system is robustly stable to the uncertainty in 

the matrix 𝐵 of 30%. It can also be said that the system will maintain its robust stability even if 

this uncertainty is increased twice. 

 

Experimental results 

The designed linear-quadratic regulator is embedded into microcontroller MC012-022. The 

regulator is represented in the following vector matrix form. Thus, the calculation of the control 

action is reprsented as multiplying a matrix by vector from a computational viewpoint. 

 

(

�̂�(𝑘 + 1)

𝑥𝑖(𝑘 + 1)

𝑢(𝑘 + 1)
) = (

𝐴 − 𝐶𝐴 0 𝐵 − 𝐶𝐵
−𝑇𝑆𝐶 1 0
𝐾𝑐 −𝐾𝑖 0

)(

�̂�(𝑘)

𝑥𝑖(𝑘)

𝑦(𝑘)
) 

𝑦(𝑘) = (𝑦𝑟𝑒𝑓(𝑘) 𝑦𝑝𝑟𝑒𝑠𝑠(𝑘) 𝑦𝑝𝑜𝑠(𝑘))𝑇 

(18) 

In this microcontroller, the visual programming approach can be used, where the algorithm 

is introduced as a block diagram through standard functional blocks. The matrix is represented as 

a one-dimensional array by row concatenation and indexed from a dedicated counter. The matrix 

elements are represented as numbers in a fixed point format, scaled by a factor of 1000. Fig. 11 
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shows the response of the piston of the cylinder when reference trajectory is periodic rectangular 

signal in both directions relative to the middle position. This is a typical signal for low-speed 

machines. During the transients, short-time stops are observed in several intermediate positions. 

The reason for this is the presence of a dead-band nonlinearity in the proportional valve built into 

the EHSU due to its construction features. The error in steady state is close to zero. The quality of 

the transients is maintained in both directions. 

 

 

Fig. 8. Step response of the closed loop 

position system. 

Fig. 9. Frequency response of the closed loop 

position system. 

 
Fig. 10. Robust stability of uncertainty 

closed loop system 

 
Fig. 11. Experimental transient response of 

the closed loop system 

 

CONCLUSION  

The article presents the developed control algorithm of the EHCM, which provides robust 

stability and performance. The system is based on a synthesized LQG regulator with integral 

action. Robust stability was investigated using the identified model of EHCM with input 

multiplicative uncertainty, which takes into account the deviations of the parameters that 

characterize the way the control signal acts on the state of the model. A number of experiments 

with the developed regulator have been executed, which confirm the quality of the EHCM control 

system. 
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