FRI-9.3-1-THPE-14

TECHNICAL - ECONOMICAL ANALYSE OF THE AIR HEATER WHEN SWITCHING COAL FROM NATURAL GAS

Prof. Iliya Iliev, PhD

Department of Heat, Hydraulics and Environmental Engineering, "Angel Kanchev" Univesity of Ruse Phone: +359 887306898 E-mail: iki@uni-ruse.bg

Assoc. Prof. Angel Terziev, PhD

Technical University of Sofia Phone: E-mail:

Engineer Milen Venev, PhD

Department of Heat, Hydraulics and Environmental Engineering, "Angel Kanchev" Univesity of Ruse Phone: +359883333425 E-mail: mvenev@uni-ruse.bg

Engineer Emilian Velkov, PhD Student

Department of Heat, Hydraulics and Environmental Engineering, "Angel Kanchev" Univesity of Ruse Phone: +359887208403 E-mail: evelkov@uni-ruse.bg

Abstract: This work consists of an analysis of the economical feasibility of introducing air heaters to energy steam generators, which is extremely important and is usually directly related to the saving of combustion resources in the process of waste heat utilization.

A project for the introduction of an additional AH-TS steam heater for steam generators No 1 and 2 in the "Pernik" Ltd heating plant was described for the purpose of lowering the exhaust gas temperature from 220 °C to about 180 °C, The efficiency of the steam generator by about 2-2.5%.

It has been found that the use of an air heater with thermosyphons as a waste heat exchanger leads to significant fuel savings and increases boiler efficiency. The air heater with thermosyphons has shown steady performance over a long period of time. The use of an air heater with gas-fired thermosyphons leads to significantly higher savings and, respectively, to a shorter payback period than to solid fuel. A more significant reduction of CO2 emissions is observed in the realization of an air heater with thermosyphons for solid fuel boilers.

Keywords: Thermosyphon; Utilization; Specific speed, fuel saving.

INTRODUCTION

The analysis of the economic feasibility of introducing air heaters to energy-producing steam generators is extremely important and is usually directly related to the saving of combustion resources in the process of waste heat utilization. Continuous operation of these facilities can provide insights into metal resistance, as well as the causes of abrasive exports or corrosion processes that have led to a reduction in the lifetime of the air heaters.

EXPOSITION

The steam generators N_{Ω} 1 and N_{Ω} 2 were designed and built at the end of the 1940s in the Central Bohemian city of Dukla (former Czechoslovakia) and put into operation in 1951 and 1952

Indicator	Humidity	Ashes	Volatile	Lower
		content	content	combustion heat
	W ^r , %	A ^r , %	V, %	Q ^r i, kJ/kg
	16	43	51.5	10500

with the design fuel respectively. The energy mix of the Pernik Central Power Plant has the following fuel-technical characteristics:

The quality of the working fuel for the period 1951-2001 is constantly deteriorating, with its calorific value decreasing from $Q^{r_i} = 10500$ to 8150 kJ/kg.

During the planned reconstruction of the steam generators No1 and No2, two thermosiphonic type air heaters were manufactured under Patent No 745 / 01.06.2005 Heat exchanger with heat pipes, [Marinov H., I., Iliev Patent No. 745 / 31.01.2002, Heat exchanger with heat pipes, 2005, Patent Office Bulgaria].

Under the terms of reference of "Toplofikatsiya - Pernik" EAD in 2000, a project for the installation of an additional air heater with thermosyphons (AH-TS) for steam generators No 1 and 2 was developed and implemented. The aim of the project was to increase the energy efficiency of the steam generator by lowering the outlet gas temperature from 2200 °C to about 1800 °C, resulting in an increase in efficiency. of the steam generator by about 2-2.5%.

Fig.1 is a schematic diagram of an air heater with thermosyphons. The air heater includes 1710 tubes (second-hand economiser tubes) with a diameter d = 32/4 mm, located in 9 rows along the gas path. The arrangement of the pipes is corridor and the total length is 7 m, the evaporation zone is 3 m long and is situated at an angle of 300, the adiabatic zone is 2 m long and is at an angle of 300 to the evaporation zone, the condensation zone is of length 2 m and is located at an angle of 300 to the adiabatic zone. Separation of the gas from the air part of the tubular air heater is realized by a 10 cm perlite-concrete layer.

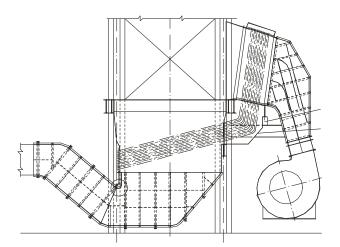


Fig. 1. Scheme of a heat-pipe air heater, realized in TPP "Republic"

Chemical desalted water filled to about $25 \div 30\%$ of the volume of the pipe at a pressure lower than atmospheric pressure (999 mbar; 1015 - 950 = 65 mbar) is used for working fluid.

One of the steam generators was in operation by 2009, and due to the failure to meet the environmental standards of EC Directive 2001/80 to limit emissions of dust, nitrogen and tar oxides, carbon dioxide from large combustion plants is decommissioned. steam generator No. 2 changed the coal-fired combustion base of natural gas without any reconstruction to change the heating surfaces. The reason for this is that the steam generator was used only in emergency situations and the investments in new reconstruction were not economically justified.

Table 1 presents the characteristics of the working fuels for the steam generators and the technical parameters of the two air heaters respectively in the mode of use of coal and natural gas.

PROCEEDINGS OF UNIVERSITY OF RUSE - 2018, volume 57, book 1

$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \end{tabular} \hline tabul$	Table Table Sr Or Nr 1,3 7,0 0,5 after 2000 year 14,5 53,2 after 2000 year 8164 2,269 2,269 3,508 1,2 2,831 51 CO2 N2 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8			
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	AH-TS Nr 1,3 7,0 0,5 after 2000 year 14,5 53,2 after 2000 year 8164 2,269 3,508 1,2 8,508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,8508 1,2 9,970 1,2 9,970 1,2 9,970 1,2 9,970 1,2 9,970 1,2 9,970 1,3,2 13,970 1,3,2 13,970 1,3,40 1,970 1,3,40 1,970 1,3,40 1,970			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sr Or Nr 1,3 7,0 0,5 after 2000 year 14,5 53,2 after 2000 year 8164 2,269 3,508 1,2 8,508 1,2 9,8508 1,2 9,831 C3H8 CO2 N2 0,26 0,15 0,71 3587 9,77 500 13,2 130 403,8 154,8 54,8 10			
for a work mass for AH-TS $21,4$ $2,1$ 2Moisture and ash content of the design fuel of AH-TSWr, Adryuntil 2000 year3LHV by operational dataQri until 2000 year15,1594Combustion air per kg fuelV0caNm ³ /kg225Fuel gas volume per kg fuelVgNm ³ /kg236Excess of air coefficient in the combustion chamber α_c -7Volume ratio of air per kg fuel to AH-1VoNm ³ /kg288Dew point temperature of the flue gasestd*0°C809Elementary composition of the natural gas for AH-TS-%CH4C2H611.1Nominal load of the steam generatorDstt/h1111.2Pressure of preheated steam P_{ps} MPa1111.3Temperature of feed water P_{fw} MPa1111.4Pressure of feed water I_{fw} k_J/kg 211.7Enthalpy of feed water I_{fw} k_J/kg 212.1Heat loss due to flue gas q_2 %10,4812.2Heat loss due to flue gas q_2 %012.1Heat loss due to flue gas q_2 %012.2Heat loss due to flue gas q_2 %0,6712.3Heat loss due to flue gas q_2 %0,6712.4Heat loss due to flue gas q_3 %012.3Heat loss due to flue gas q_2 </td <td>1,3 7,0 0,5 after 2000 year 14,5 53,2 after 2000 year 8164 2,269 8,508 1,2 2,831 C3H8 CO2 0,26 0,15 0,26 0,15 13,2 13,2 130 403,8</td>	1,3 7,0 0,5 after 2000 year 14,5 53,2 after 2000 year 8164 2,269 8,508 1,2 2,831 C3H8 CO2 0,26 0,15 0,26 0,15 13,2 13,2 130 403,8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	after 2000 year 14,5 53,2 after 2000 year 8164 2,269 3,508 1,2 2,831 51 C3H8 CO2 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8			
of AH-TS15,1593LHV by operational dataQ'iuntil 2000 year4Combustion air per kg fuelV° _{ca} Nm³/kg25Fuel gas volume per kg fuelVgNm³/kg36Excess of air coefficient in the combustion chamber α_c -7Volume ratio of air per kg fuel to AH-1V°Nm³/kg28Dew point temperature of the flue gasest ^{dp} °C809Elementary composition of the natural gas for AH-TS-%CH4 C_2H_6 11.1Nominal operating parameters of steam generator0.813311Nominal load of the steam generatorDstt/h111.2Pressure of preheated steamtps°C111.3Temperature of feed watertw°C111.4Pressure of feed watertw°C111.5Temperature of feed watertwkJ/kg211.6Enthalpy of preheated steamtpskJ/kg212Heat loses due to flue gas q_2 %10,4812.2Heat loses due to flue gas q_2 %012.1Heat loses due to flue gas q_2 %0,1813Enthalpy of outgoing gases for the designed fuel of AH-TS q_3 %013Enthalpy of outgoing gases for the designed fuel of AH-TS q_2 q_1 q_2 14Heat loss due to fly ash and slag q_6 <td>14,5 53,2 after 2000 year 8164 2,269 3,508 1,2 3,508 1,2 1,2 2,831 51 C_3H_8 CO2 N2 0,26 0,15 0,71 3587 3587 125 7,7 500 13,2 130 403,8 554,8</td>	14,5 53,2 after 2000 year 8164 2,269 3,508 1,2 3,508 1,2 1,2 2,831 51 C_3H_8 CO2 N2 0,26 0,15 0,71 3587 3587 125 7,7 500 13,2 130 403,8 554,8			
3LHV by operational dataQriuntil 2000 year4Combustion air per kg fuelV° _{ca} Nm³/kg25Fuel gas volume per kg fuelVgNm³/kg26Excess of air coefficient in the combustion chamber α_c -7Volume ratio of air per kg fuel to AH-1V°Nm³/kg28Dew point temperature of the flue gasestd ⁴ p0C809Elementary composition of the natural gas for AH-TS-%CH4 G2/H6C2/H610LHV by certificateQrikJ/nm³311Nominal operating parameters of steam generator0stt/h11.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of feed watertbw0C11.4Pressure of feed watertbw0C11.5Temperature of feed watertbw0C11.6Enthalpy of preheated steamlpskJ/kg212.1Heat loss due to flue gasq2%10,4812.2Heat loss due to unburn carbonq3%012.3Heat loss due to flue gas and slagq6%0,1812.4Heat loss due to fly ash and slagq6%0,1812.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiencyr%84,813Enthalpy of outgoing gases for the designe	after 2000 year 8164 2,269 3,508 1,2 2,831 51 C ₃ H ₈ CO ₂ N ₂ 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8			
kJ/kg85404Combustion air per kg fuel $V_{0_{Ca}}$ Nm³/kg25Fuel gas volume per kg fuel V_{g} Nm³/kg36Excess of air coefficient in the combustion chamber α_{c} -7Volume ratio of air per kg fuel to AH-1VoNm³/kg28Dew point temperature of the flue gasest ^{4p} °C809Elementary composition of the natural gas for AH-TS-%CH4 97,96 C_{2H_6} 10LHV by certificateQrikJ/nm³3311Nominal operating parameters of steam generator (SG) Ne 111.1Nominal operating parameters of steam generator (SG) Ne 111.1Nominal load of the steam generatorDstt/h111.2Pressure of preheated steamtps°C111.3Temperature of preheated steamtps%011.4Pressure of feed waterthw%211.5Temperature of feed waterthwkJ/kg211.6Enthalpy of preheated steamlpskJ/kg212.1Heat loss due to flue gas q_2 %10,4812.2Heat loss due to flue gas q_2 %012.3Heat loss due to flue gas q_6 %0,6712.4Heat loss due to flue gas and slag q_6 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency <td< td=""><td>8164 2,269 3,508 1,2 2,831 51 C₃H₈ CO₂ 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 154,8</td></td<>	8164 2,269 3,508 1,2 2,831 51 C ₃ H ₈ CO ₂ 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 154,8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,269 3,508 1,2 2,831 C ₃ H ₈ CO ₂ N ₂ 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8			
5Fuel gas volume per kg fuelVgNm³/kg36Excess of air coefficient in the combustion chamber α_c 7Volume ratio of air per kg fuel to AH-1V°Nm³/kg28Dew point temperature of the flue gasestd ^{4p} °C8029Elementary composition of the natural gas for AH-TS-%CH4C2H610LHV by certificateQ°ikJ/nm³3311Nominal operating parameters of steam generator (SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamtps°C11.4Pressure of freed waterPtwMPa11.5Temperature of feed waterttw°C11.6Enthalpy of preheated steamlpskJ/kg211.7Enthalpy of feed waterlbwkJ/kg212.1Heat loss due to flue gasq2%10,4812.2Heat loss due to nationq3%012.3Heat loss due to radiationq5%0,6712.4Heat loss due to radiationq5%0,1812.6Steam boiler efficiencyη%84,813Enthalpy of outgoing gases for the designed fuel of AH-TSη%g2 =13Enthalpy of outgoing gases for the designed fuel of AH-TSη%g2 =14Heat loss due to fly ash and slag fuel of AH-TSq6 <td< td=""><td>8,508 1,2 2,831 <u>51</u> C₃H₈ CO₂ N₂ 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8</td></td<>	8,508 1,2 2,831 <u>51</u> C ₃ H ₈ CO ₂ N ₂ 0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8			
5Fuel gas volume per kg fuelVgNm³/kg36Excess of air coefficient in the combustion chamber α_c 7Volume ratio of air per kg fuel to AH-1V°Nm³/kg28Dew point temperature of the flue gasestd°p°C8029Elementary composition of the natural gas for AH-TS-%CH4C2H610LHV by certificateQrikJ/nm³3311Nominal operating parameters of steam generator (SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa1111.3Temperature of feed waterPfwMPa111.4Pressure of feed waterItw°C111.5Temperature of feed waterItw°C111.6Enthalpy of preheated steamIpskJ/kg211.7Enthalpy of feed waterItw%012.1Heat loss due to flue gas q_2 %10.4812.2Heat loss due to naturat fuel in residual q_4 %1,512.4Heat loss due to adiation q_5 %0,6712.5Heat loss due to adiation q_5 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS η''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left(\frac{I''_{fgas} - a}{Q''_{f}} Q''_{fgas} \right)$ <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{ c c c c c c } \hline chamber & V & Nm^3/kg & V^2 & Volume ratio of air per kg fuel to AH-1 & V^{\circ} & Nm^3/kg & V^2 & Volume ratio of air per kg fuel to AH-1 & V^{\circ} & Nm^3/kg & V^2 & Volume ratio of air per kg fuel to AH-1 & V^{\circ} & Nm^3/kg & V^2 & Volume ratio of air per kg fuel to AH-1 & V^{\circ} & Nm^3/kg & Volume ratio of air per kg fuel to AH-1 & V^{\circ} & Nm^3/kg & Volume ratio of the natural gas & Volume ratio of C & Volume ratio of the natural gas & Volume ratio of the nator of the natural gas & Volume ratio of the nator of the nator of the $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
7Volume ratio of air per kg fuel to AH-1V°Nm³/kgZ8Dew point temperature of the flue gasest ^{4p} °C809Elementary composition of the natural gas for AH-TS-%CH₄C2H₄C2H₄10LHV by certificateQ ^r ikJ/nm³311Nominal operating parameters of steam generatorCSG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of preheated steamtps°C11.4Pressure of feed waterPfwMPa11.5Temperature of feed watertww°C11.6Enthalpy of preheated steamIpskJ/kg12Heat losslead steamIpskJ/kg12Heat loss due to flue gasq2%10,4812.1Heat loss due to unburn carbonq3%012.3Heat loss due to nuburn tuel in residualq4%1,512.4Heat loss due to flue gas for the designedq6%0,1812.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiencyη%84,813Enthalpy of outgoing gases for the designed fuel of AH-TSI"kJ/kg (kJ/nm³)q213Enthalpy of outgoing gases for the designed fuel of AH-TSI"kJ/kg (kJ/nm³)q2	51 C ₃ H ₈ CO ₂ N ₂ 0,26 0,15 0,71 3587			
8Dew point temperature of the flue gasest ^{dp} ⁰C809Elementary composition of the natural gas for AH-TS-% CH_4 C_2H_6 10LHV by certificateQrik.J/nm³311Nominal operating parameters of steam generator(SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of preheated steamtps°C11.4Pressure of feed waterPfwMPa11.5Temperature of feed watertww°C11.6Enthalpy of preheated steamlpskJ/kg211.7Enthalpy of feed waterliwkJ/kgCeal12Heat losesq2%10,4812.1Heat loses due to flue gasq2%012.1Heat loses due to flue gasq2%012.3Heat loss due to flue gasq4%1,512.4Heat loss due to fly ash and slagq6%0,1812.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left(I''_{fas} - \alpha - Q_r''_r - Q_r''_r$	51 C ₃ H ₈ CO ₂ N ₂ 0,26 0,15 0,71 3587			
9Elementary composition of the natural gas for AH-TS-%CH ₄ C ₂ H ₆ 10LHV by certificateQrikJ/nm³311Nominal operating parameters of steam generator (SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of preheated steamtps°C11.4Pressure of feed waterPfwMPa11.5Temperature of feed watertw°C11.6Enthalpy of preheated steamlpskJ/kg211.7Enthalpy of feed waterltwkJ/kgE12Heat loss due to flue gasq2%10,4812.2Heat loss due to flue gasq2%012.3Heat loss due to unburn carbonq3%012.4Heat loss due to flue gasq6%0,1812.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiencyη%84,813Enthalpy of outgoing gases for the designed fuel of AH-TSI'' fgaskJ/kg (kJ/nm³)q213Enthalpy of outgoing gases for the designed fuel of AH-TSI'' fgaskJ/kg (kJ/nm³)q2	C ₃ H ₈ CO ₂ N ₂ 0,26 0,15 0,71 3587			
for AH-TS97,960,8110LHV by certificateQrikJ/nm³311Nominal operating parameters of steam generator(SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of preheated steamtps°C11.4Pressure of feed waterPtwMPa11.5Temperature of feed watertw°C11.6Enthalpy of preheated steamlpskJ/kg211.7Enthalpy of feed waterItwkJ/kgE12Heat loses%Accepted value perforPerfor12.1Heat loss due to flue gasq2%10,4812.2Heat loss due to unburn carbonq3%012.3Heat loss due to unburnt fuel in residualq4%1,512.4Heat loss due to fly ash and slagq6%0,1812.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiencyη%84,813Enthalpy of outgoing gases for the designed fuel of AH-TSI''' fgasskJ/kg (kJ/nm³)q214.FitGGGG15.GSteam boiler efficiencyη%0,1812.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiencyη%84,813Enthalpy of outgo	0,26 0,15 0,71 3587 125 7,7 500 13,2 130 403,8 554,8			
10LHV by certificateQrikJ/nm³311Nominal operating parameters of steam generator (SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of preheated steamtps°C11.4Pressure of feed waterPfwMPa11.5Temperature of feed watertfw°C11.6Enthalpy of preheated steamlpskJ/kg12Heat loses%Accepted value perfector12Heat loses%Accepted value perfector12.1Heat loss due to flue gasq2%10,4812.2Heat loss due to unburn carbonq3%012.3Heat loss due to unburn fuel in residual fuel of AH-TSq6%0,6712.5Heat loss due to fly ash and slagq6%0,1813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q''_i} \right]$	3587 125 7,7 500 13,2 130 403,8 554,8			
11Nominal operating parameters of steam generator(SG) № 111.1Nominal load of the steam generatorDstt/h11.2Pressure of preheated steamPpsMPa11.3Temperature of preheated steamtps°C11.4Pressure of feed waterPfwMPa11.5Temperature of feed watertfw°C11.6Enthalpy of preheated steamlpskJ/kg211.7Enthalpy of feed waterlfwkJ/kgE12Heat loses%Accepted value perfectorPerfector12.1Heat loss due to flue gasq2%10,4812.2Heat loss due to unburn carbonq3%012.3Heat loss due to unburnt fuel in residualq4%1,512.4Heat loss due to radiationq5%0,6712.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q''_i} \right]$	125 7,7 500 13,2 130 403,8 554,8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,7 500 13,2 130 403,8 554,8			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7,7 500 13,2 130 403,8 554,8			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	500 13,2 130 403,8 554,8			
11.4Pressure of feed water P_{fw} MPa11.5Temperature of feed water t_{w} $^{\circ}C$ 11.6Enthalpy of preheated steam l_{ps} kJ/kg211.7Enthalpy of feed water l_{hw} kJ/kg512Heat loses $%$ $\frac{P_{fw}}{Coal}$ Accepted value12Heat loses $%$ $\frac{Q_2}{V}$ $%$ 10,4812.1Heat loss due to flue gas q_2 $%$ 10,4812.2Heat loss due to unburn carbon q_3 $%$ 012.3Heat loss due to unburn tresidual q_4 $%$ 1,512.4Heat loss due to radiation q_5 $%$ 0,6712.5Heat loss due to fly ash and slag q_6 $%$ 0,1812.6Steam boiler efficiency η $%$ 84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} $kJ/kg (kJ/nm^3)$ $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i} \right]$	13,2 130 403,8 554,8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	130 403,8 554,8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	403,8 54,8			
11.6Enthalpy of preheated steamIpskJ/kg211.7Enthalpy of feed waterInInkJ/kg512Heat loses%Accepted value perfector9%Accepted value perfector12Heat losesq2%10,4812.1Heat loss due to flue gasq2%012.3Heat loss due to unburn carbonq3%012.3Heat loss due to unburnt fuel in residualq4%1,512.4Heat loss due to radiationq5%0,6712.5Heat loss due to fly ash and slagq6%0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - a)}{Q'_i} \right]$	403,8 54,8			
11.7Enthalpy of feed waterImage: kJ/kgKJ/kgEnthalpy of feed water12Heat loses%Accepted value perfection12Heat loses%%012.1Heat loss due to flue gas q_2 %10,4812.2Heat loss due to unburn carbon q_3 %012.3Heat loss due to unburnt fuel in residual q_4 %1,512.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i} \right]$	54,8			
12Heat loses%Accepted value perform12.1Heat loss due to flue gas q_2 %10,4812.2Heat loss due to unburn carbon q_3 %012.3Heat loss due to unburn tuel in residual q_4 %1,512.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i} \right]$,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	es are the average			
12.1Heat loss due to flue gas q_2 %10,4812.2Heat loss due to unburn carbon q_3 %012.3Heat loss due to unburnt fuel in residual q_4 %1,512.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i} \right]$	performance			
12.1Heat loss due to flue gas q_2 %10,4812.2Heat loss due to unburn carbon q_3 %012.3Heat loss due to unburnt fuel in residual q_4 %1,512.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i} \right]$	Natural gas			
12.2Heat loss due to unburn carbon q_3 %012.3Heat loss due to unburnt fuel in residual q_4 %1,512.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - a)}{Q'_i} \right]$	8,53			
12.3Heat loss due to unburnt fuel in residual q_4 %1,512.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q_i'} \right]$	0,55			
12.4Heat loss due to radiation q_5 %0,6712.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm ³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q_i^r} \right]$	0			
12.5Heat loss due to fly ash and slag q_6 %0,1812.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm ³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q_i^r} \right]$	•			
12.6Steam boiler efficiency η %84,813Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} kJ/kg (kJ/nm³) $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i}\right]$	0,67			
13 Enthalpy of outgoing gases for the designed fuel of AH-TS I''_{fgas} I''_{fgas} $kJ/kg (kJ/nm^3)$ $q_2 = \left[\frac{(I''_{fgas} - \alpha)}{Q'_i}\right]$	-			
of AH-TS L	88,6			
of AH-TS L	$[I] \left[\frac{I00-q_4}{100-q_4} \right]$			
of AH-TS L				
14 Flue gases temperature at nominal load t'_{fgas} °C 220	j (100)			
- · · · fgas	220			
15 Flue gases temperature after reconstruction t''_{fgas} °C 184	180			
	05			
16 Air temperature at the inlet to the AH-TS $t_{\ddot{a}ir}^{\prime AHTS}$ °C 25	25			
	83,3			
17 Air temperature at the outlet of AH-TS $t_{air}^{"AHTS}$ °C 84,8	03,3			
	4003,3			
18 Enthalpy of outgoing gases at the inlet to the I''_{fgas} kJ/kg (kJ/nm ³) 1156,3 AH-TS	1000,0			
	3259,9			
19 Enthalpy of outgoing gases at the outlet to the AH-TS I_{fgas}^{m} kJ/kg (kJ/nm ³) 975,2	5253,3			
	315,5			
	5,510			
15	4.05			
21 Excess of air in the flue gases α''_{fgas} - 1,37	1,25			
	8,53			
	ō,ɔJ			
AH-TS				
23 Flue gas losses at outlet temperature to the q_2'' - 12,86	40.75			
AH-TS	10,75			
24 Boiler efficiency at inlet temperature to the η' - 84,8				
AH-TS	10,75 88,6			

25	Boiler efficiency at outlet temperature to the AH-TS	η "	-	87,2 90,8		
26	Difference in boiler efficiency	$\Delta \eta$	-			
				2,72	2,43	
27	Amendment in losses q ₂ at change of	Δq_2	-	0,755	0,595	
	t^{\prime}_{fgas} by 10°C					
28	Determination of fuel consumption at inlet	B'	t/h	50,343	11969	
	temperature to the AH-TS		(nm³/h)			
29	Determination of fuel consumption at outlet	В"	t/h	48,972	11678	
	temperature to the AH-TS		(nm³/h)			
30	Fuel savings at nominal load	∆B	t/h	1,371	291	
			(nm³/h)			
31	Annual usage of the boiler #1	τ	h/year	4	800	
32	Annual fuel savings	В	t/year	6580	1397	
			(10 ³ nm ³ /year)			
33	Fuel price	Pf	EUR/t	12,59	254,85	
			(EUR/10 ³ nm ³)			
34	Price of electrical energy	Pel	EUR/kWh),08	
35	Annual cash savings	Lan	EUR/year	82842	356025	
36	Electrical energy consumption for coal milling	Е	kWh/t	25	-	
37	Annual savings of electrical energy	L _{el-s}	kWh/year	164500	-	
38	Annual cash savings of electrical energy	Lan-el	EUR/year	13160	-	
39	Total annual cash savings	Lan+Lan-el	EUR/year	96002	356025	
40	Total heating surface of AH-TS	A total	m ²	8	360	
41	Total mass of AH-TS	G	kg	26144		
42	Total costs of implementation of AH-TS	L _{total}	EUR	185000		
43	Payback period	PB	year	1,93	0,52	
44	CO ₂ emission factor	EFco2	t CO ₂ /t	0,789	1.996	
			(t CO ₂ /10 ³ nm ³)			
45	CO ₂ emission reduction	CO ₂	t/year	5192	2788	

PROCEEDINGS OF UNIVERSITY OF RUSE - 2018, volume 57, book 1

The data presented in Table 1 shows a higher efficiency of steam generator 2 when operating with natural gas, due to the possibility of deeper cooling of the exhaust gases. However, the final effect, expressed in the relative decrease of $\Delta\eta$, in the use of a heater with thermosyphons on fuel coal is higher $\Delta \eta = 2.72$ against $\Delta \eta = 2.43$ for gaseous fuel. This is explained by the fact that in the case of solid fuel boilers, kW (η '= 84.8%) without the presence of an air heater is considerably lower than that of a combustion gas boiler (η '= 88.6%) at the same conditions.

Regarding the economic feasibility, the use of an air heater with a thermosyphon for gas fuel leads to significantly higher savings and, respectively, to a shorter payback period than to solid fuel due to the significantly higher gas price compared to this of local coal.

An assessment of the reduction of CO2 emissions as a result of the fuel savings for solid and gaseous fuels has also been made. From the results presented in Table 1, it is seen that a more significant reduction in CO2 emissions was observed in the realization of an air heater with thermosyphons for solid fuel boilers.

The visual observations on the thermal surfaces of the thermosyphons show little wear as a result of the abrasive action of the coal dust resulting from the 9-year operation of the high-ash coal-fired steam coal steam generator. It should be noted, however, that thermosyphons have not compromised their tightness because they are made of re-used thick-walled economiser tubes.

EXPERIMENTAL RESEARCH

The purpose of the experimental studies is to determine whether the 18-year operation of the steam generator No. 2 (9 years, of which the steam generator worked on coal and the remaining 9 on natural gas) influenced the efficiency of the steam generator and the step in the operation data Table 2) correspond to the calculations presented in Table 1.

Numerous experimental studies regarding the efficiency of the suggested two-phase thermosyphons have been carried out at different regimes of steam boiler operation.

The measurements of the air heater were carried out in 2008 and 2015 when the boiler burned solid fuel (2008) and subsequently natural gas (2015) and its characteristics are presented in Table 1. During the experiments, the following is measured at multiple points along the flue gases and the air paths: the air temperature before AH-TS; the temperature of the flue gases before AH-TS; the temperature of the flue gases after AH-TS; the steam generator's nominal load (table 2) (figure 1). The average temperatures of the parameters measured are given in the last column of table 2.

The heat transfer coefficients in the evaporation and condensation zones have been determined analytically by means of the normative method used in [8] with corrections made in accordance with the angles of inclination of the thermosyphons. Using the aforementioned methodology we obtain the heat transfer coefficients of the evaporation and condensation zones respectively α_{fgas} =104.9 µ α_{air} =84.9 (W/m².K) for coal and respectively α_{fgas} =99,7 µ α_{air} =84.7 (W/m².K) a rasobo гориво. Lower values of convective heat exchange coefficients are overshadowed by lower gas flow rates in the inter-tubular space of natural gas as a result of the lower excess air ratio compared to solid fuel.

			Table Trial				
Parameter	Label		1	2	23	24	Average
Air temperature before AH-TS, ºC	$t_{air}^{\prime AH-TS}$	coal	25	23.6	24.8	26.2	25.0
		natural gas	22.6	24.2	24.8	25.1	24.2
Air temperature after AH-TS, ⁰ C	$t_{air}^{\prime\prime AH-TS}$	coal	84.8	81.7	73.0	80.2	81.2
		natural gas	84,6	83,7	83,9	86,3	84,6
Flue gas temperature before AH-TS, 00	t'_{fgas}	coal	219.5	214	218	217.5	218.4
		natural gas	222.5	218.8	216.4	220.5	219.6
Flue gas temperature after AH-TS, ^o C	t''_{fgas}	coal	184.3	179	189	185	184.9
		natural gas	180.2	178.1	177.1	178.5	178,5
Steam generator load th	Ds	coal	122.5	118	121	123	121
Steam generator load, t/h		natural gas	120	122.4	118.9	114.6	119

The experimental results presented in Table 2 show that the measured temperatures (Table 2) are very close to the computational (Table 1).

CONCLUSIONS

1. The use of an air heater with a thermosiphon as a waste heat exchanger leads to significant fuel savings and increases the boiler efficiency from 2.4 to 2.7% depending on the fuel used.

2. The air heater with thermosyphons has shown steady performance for 18 years, 9 of which worked with high abrasive hard coal.

3. Economically advantageous is a gas heater gas heater. The payback period is significantly lower and the heater's resource may be significantly higher.

REFERENCES

Marinov, H. I., Iliev, Patent № 745/31.01.2002, Heat exchanger with heat pipes.

Iliev, I. (2013). *Methods and Tools for Effective Utilization of Waste Heat from Low Potential Paragon Flows*. Publishing House of RU, ISBN 978-619-90013-9-4.

Stamov, S. (2000). Heating, heat and gas supply. Technika Publishing House, Sofia.

M. R. Sarmasti Emami. *Mathematical Modeling of Thermosyphon Heat Exchanger for Energy Saving.*

Manteli, M. (2013). Thermosyphon Technology for Industrial Applications in Heat Pipes and Solid Sorption Transformations edited by L. Vasiliev and S. Kakac. CRC Press, ISBN 9781466564145.

Thermal calculation of boilers (Standard Method), third edition, pre-processed and augmented, Leningrad, 1973.

Thermal calculation of boilers (Standard method), second edition, pre-processed and augmented, Leningrad, 1973.

Bezrodny, M. K., Pioro, I. L., Kostyuk, T. O. (2005). *Transfer processes in two-phase thermosiphon systems. Theory and Practice*, 2nd ed., Ext. and pererabat. - Kiev: Fact, 704 p., ISBN 966-359-045-9.