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Abstract: A class of Markov Decision Making Processes (MDP) is proposed in this work, considering the network 

risks. Risk is considered as a product of two measures one of which is the probability for an adverse event at the process’ 

passing through a given state. It is proved that in case of the same values of these probabilities a network flow of risks is 

received which has one-to-one mapping to the MDP. Relations between these two controllable processes are obtained. 

A case is investigated when the probabilities of adverse events are different for the different states and a method 

is proposed through which in this case the optimal solutions for the MDP with risks can be found. The results received 

are confirmed by appropriate numerical examples. 

The possible areas of application of the MDP with risks being proposed are pointed out. 
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A BRIEF INTRODUCTION 

Markov processes take an important place in the probability theory. Their role significantly 

grew up when in the frame of the scientific area ‘Operations research’ ‘Markov Decision Processes’ 

(MDP) appeared and achieved wide popularity. 

In (Sgurev, V., 1993) additional linear constraints were introduced in the MDP and as a result 

the usage of the concept ‘Markov Flows’ was proposed. 

The concept ‘risk’ started to be used lately in various dynamic processes, including stochastic 

ones, and it to be embedded in some mathematical structures used in decision making support 

systems. 

A new class of MDP is considered in the present work – Markov Decision processes with risks. 

As the Markov processes have considerable applications, then from the up-to-date aspect, 

accounting for the risk at their running may be of substantial importance. The way in which the risk 

would be embedded in the Markov structures plays a very important role in theoretical aspect. 

 

NETWORK FLOW INTERPRETATION OF MDP 

An expedient approach is the functioning of a MDP to be considered on an arbitrary network. 

Let G(X,U) be defined as a directed graph with a set of nodes (vertices) X and a set of edges (arcs) U, 

whose number is equal to |X| = n and |U| = m, respectively. The indices of the graph’s nodes are I = 

{i / xi ϵ X}, and of the arcs - I′  = { xij / (i, j) ϵ U }. Indices of nodes connected with outgoing from xi 

arcs are denoted by 𝐴𝑖 = {𝑗/𝑥𝑖𝑗 ∈ 𝑈}, and of those, which are connected through incoming in xi arcs 

– by 𝐵𝑖 = {𝑗/𝑥𝑖𝑗 ∈ 𝑈} (Christofides N., 1986). 

Let a set of probability functions {𝑝𝑖𝑗
𝑘 } be assigned, such that for i ϵ I and k ϵ Ki  it is true: 

0 ≤ 𝑝𝑖𝑗
𝑘 ≤ 1; ∑ 𝑝𝑖𝑗

𝑘 = 1𝑗∈𝐴𝑖
;     (1) 

where Ki = {1, 2, ….,k} is a set of the indices of the possible selectable actions from the node of index 

i. 

The probability the Markov process to get into state of index i and from it an action of index k 

ϵ Ki to be selected will be denoted by 𝑥𝑖
𝑘. The gain which is obtained if the DMP is in state i and from 

it action k ϵ Ki is selected is denoted by 𝑎𝑖
𝑘. 
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Markov process is turned into a controllable one in the following way: 

a) From its initial state of index i0 at choice of action k the process gets into some of the states 

of index from 𝐴𝑖 and yields a profit of 𝑎𝑖
𝑘 𝑥𝑖

𝑘. In this way the initial step is implemented. 

b) At receiving information in what a new state j ϵ Ai the process has gotten into a new choice 

of an action k ϵ Kj is made and the process makes a new step and gets into a new state of index s ϵ Aj, 

bringing a new profit of  𝑎𝑗
𝑘 𝑥𝑗

𝑘. 

This controllable, multistep process is repeated until the MDP executed the necessary number 

of steps, or did not get into state i ϵ I, which is defined as final, finishing. 

If the objective function is defined as 

L = ∑ ∑ 𝑎𝑖
𝑘𝑥𝑖

𝑘
𝑘ϵ𝐾𝑖

 ⟶𝑖ϵ 𝐼  max (min),    (2) 

then defining of optimal actions k ϵ Ki for each state i ϵ I will be reduced to solving of the following 

network flow programming problem (P. A. Jensen, W. J. P. Barnes, 1987) from (2) to (5) , namely, 

for each i ϵ I: 

∑ 𝑥𝑖
𝑘 −𝑘ϵ𝐾𝑖

 ∑ ∑ 𝑝𝑗𝑖
𝑘 𝑥𝑗

𝑘
𝑘ϵ𝐾𝑖

=𝑗ϵ 𝐵𝑖
{

𝑣𝑖 , if  𝑥𝑖 ∈ 𝑆;
0, if 𝑥𝑖 ∉ 𝑆 ∪ 𝑇
−𝑣𝑖 , if  𝑥𝑖 ∈ 𝑇

;   (3) 

𝑥𝑖
𝑘 ≥ 0; k ϵ Ki;        (4) 

𝑥𝑖
𝑘 ≤ 1; k ϵ Ki;        (5) 

where S is a set of sources, T – a set of consumers at which (𝑆 ∪ 𝑇) ⊆ 𝑋 and 𝑆 ∩ 𝑇 = ∅; {vi / xi ϵ S}, 

{vj / xj ϵ T} and ∑ 𝑣𝑖𝑥𝑖∈𝑆
=  ∑ 𝑣𝑗𝑥𝑗∈𝑇

; ∅ - empty set. 

If optimal control of MDP is sought for, then at each getting into each state i ϵ I the optimization 

problem from (2) to (5) is solved and optimal actions {𝑥𝑖
𝑘/ k ϵ Ki } are realized, which represent 

mixed (stochastic) actions from the same state. Това означава, че не се избира една единствена 

поликика k от Ki, а се определят вероятностите, с които всяка една политика от Ki се използва 

на дадената стъпка. 

In the controllable Markov process thus defined on the network, i.e. on the graph G(X,U), risks 

arise in some applications due to unprecise realization of the process. It is expedient these risks to be 

quantitavely assessed by using {𝑥𝑖
𝑘}. Then the risk would  characterize the losses at their realization, 

and following the widely accepted approach (Sgurev V., St. Drangajov, 2014) risk 𝑟𝑖
𝑘 will be 

represented as a product of two measures – the value of 𝑥𝑖
𝑘 and  the probability 𝑝𝑖

𝑘 for an adverse 

event at the realization of the latter, i.e. for each i ϵ I и k ϵ Ki 

𝑟𝑖
𝑘 = 𝑝𝑖

𝑘𝑥𝑖
𝑘;      (6) 

where 0 ≤ 𝑝𝑖
𝑘 ≤ 1. 

It follows from relations from (4) to (6) that for each i ϵ I and k ϵ Ki 

0 ≤ 𝑟𝑖
𝑘 ≤ 1.      (7) 

Two cases will be considered, related to the defining of 𝑟𝑖
𝑘: 

A. Each quantity {𝑝𝑖
𝑘/𝑖 ϵ 𝐼;   𝑘 ϵ 𝐾𝑖} will be supposed to be of one and the same value of the 

probability for an adverse event, i.e. for each i ϵ I and k ϵ Ki  

𝑝𝑖
𝑘 = 𝑝.       (8) 

Then 

 𝑟𝑖
𝑘 = 𝑝𝑥𝑖

𝑘.      (9) 

If both sides of relations (2) to (5) are multiplied by p then according (8) and (9) it will be 

received: 

Lp = Lr = ∑ ∑ 𝑎𝑖
𝑘𝑟𝑖

𝑘
𝑘ϵ𝐾𝑖

 ⟶𝑖ϵ 𝐼  max (min);    (10) 

subject to the following constraints: for each i ϵ I  

∑ 𝑟𝑖
𝑘 −𝑘ϵ𝐾𝑖

 ∑ ∑ 𝑝𝑗𝑖
𝑘 𝑟𝑗

𝑘
𝑘ϵ𝐾𝑖

=𝑗ϵ 𝐵𝑖
{

𝑣𝑖
𝑟 , if  𝑥𝑖 ∈ 𝑆;

0, if 𝑥𝑖 ∉ 𝑆 ∪ 𝑇

−𝑣𝑖
𝑟 , if  𝑥𝑖 ∈ 𝑇

 ;   (11) 

𝑟𝑖
𝑘 ≥ 0; k ϵ Ki;        (12) 

𝑟𝑖
𝑘 ≤ 1; k ϵ Ki;        (13) 

https://www.amazon.com/Paul-A.-Jensen/e/B0028EV1N6/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=W.+J.+P.+Barnes&search-alias=books&field-author=W.+J.+P.+Barnes&sort=relevancerank
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where 𝑣𝑖
𝑟 = pvi; i ∈ 𝑆 ∪ 𝑇. 

Four latter relations define a network flow of controllable Markov risk {𝑟𝑖
𝑘}. Its comparison to 

relations (2) to (9) shows that a one-to-one mapping exists between the two controllable flows – the 

Markovian one {𝑥𝑖
𝑘} and the Markov flow of risks, i.e., after defining the optimal MDP by relations 

(2) to (5), all parameters of the Markov flow of risks from (10) to (13) may be received through 

formula (6), and vice versa. 

The linear form L from (2) shows the profit from the realization of the MDP, and Lr from (10) 

points out the loss from the realizations of risks. The difference L - Lr is and indicator for the 

decreasing of the profit at accounting for network risks through (8). 

B. Let the requirement (8) not be complied with, and the probabilities of adverse events {𝑝𝑖
𝑘} 

are not equal to each other. So relation (11) is not observed for risks {𝑟𝑖
𝑘} and as so they are not 

elements of a network flow, i.e., the existence of a Markov flow of risks cannot be guaranteed. 

It is proposed in this case risks to be accounted for through the objective function L.. Through 

∑ ∑ 𝑏𝑖
𝑘𝑝𝑖

𝑘𝑥𝑖
𝑘

𝑘ϵ𝐾𝑖
 𝑖ϵ 𝐼  will be denoted the total cost to be incurred in relation to the risks arising in each 

i ϵ I when choosing action k ϵ Ki. The coefficients  {𝑏𝑖
𝑘} show the value to be paid to cover a unit of 

risk 𝑟𝑖
𝑘 = 𝑝𝑥𝑖

𝑘. Then it follows that the profit in L should be decreased respectively, and the new 

objective L′ will be equal to: 

L′ = ∑ ∑ (𝑎𝑖
𝑘𝑥𝑖

𝑘 − 𝑏𝑖
𝑘𝑝𝑖

𝑘𝑥𝑖
𝑘

𝑘ϵ𝐾𝑖
 𝑖ϵ 𝐼 ) = ∑ ∑ 𝑥𝑖

𝑘(𝑎𝑖
𝑘 − 𝑏𝑖

𝑘𝑝𝑖
𝑘

𝑘ϵ𝐾𝑖
 𝑖ϵ 𝐼 ) =  ∑ ∑ 𝑐𝑖

𝑘𝑥𝑖
𝑘

𝑘ϵ𝐾𝑖
 𝑖ϵ 𝐼 .

 (14) 

As 𝑐𝑖
𝑘 = 𝑎𝑖

𝑘 - 𝑏𝑖
𝑘𝑝𝑖

𝑘, then it follows from (2) and (14) that L′ ≤ L. 

This second approach makes it possible to determine the optimal MDP by taking into account 

risks, for which in the most general case 𝑝𝑖
𝑘 ≠ 𝑝𝑗

𝑘 at i ≠ j. For this purpose the problem from (3) to (5) 

should be solved for the linear form L′ of (14). 

In principle, it is possible to introduce different upper bounds of the capacities of the values 

{𝑥𝑖
𝑘}, and then it will come to using the ‘mincut-maxflow’ theorem (D. R. Ford, D. R. Fulkerson, 

2010) and to the more general concept of controllable Markov flows, as it is realized in (Sgurev, V., 

1993). However, in the present paper, more simple and straightforward approaches and models are 

addressed that are directly related to the risks, which is the main goal of the authors. 

 

NUMERICAL EXAMPLE 

A graph G(X,U) with six nodes from X and eight arcs from U is given, as shown in Fig. 1. 

v = 1 

x1 

x2 

x3 x5 

x4 

x6 

-v5 

-v6 

0.4(0.5) 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 1 

  

The parameters of the MDP with risks, defined on the graph G(X,U) have the following values: 

a) Transition probabilities 

for x1:  𝑝1,2
1  = 0.8; 𝑝1,2

2  = 0.9; 𝑝1,3
1  = 0.2; 𝑝1,3

2  = 0.1; 

for x2:  𝑝2,3
1  = 0.3; 𝑝1,3

2  = 0.6; 𝑝2,4
1  = 0.7; 𝑝2,4

2  = 0.4; 

for x3:  𝑝3,4
1  = 0.6; 𝑝3,4

2  = 0.5; 𝑝3,5
1  = 0.4; 𝑝3,5

2  = 0.5; 

for x4:  𝑝4,5
1  = 0.8; 𝑝4,5

2  = 0.7; 𝑝4,6
1  = 0.2; 𝑝4,6

2  = 0.3. 

https://dl.acm.org/author_page.cfm?id=81481642115&coll=DL&dl=ACM&trk=0
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b) Arc ratings at different actions 

𝑎1
1 = 9; 𝑎1

2 = 10; 𝑎2
1 = 3; 𝑎2

2 = 2; 

𝑎3
1 = 3; 𝑎3

2 = 4; 𝑎4
1 = 14; 𝑎4

2 = 15. 

c) Flows 

v1 = 1; T = {x5, x6}; v5 and v6 – variables. 

  

 A. Case #1 at observing (11). 

 Then the equations from (2) to (15) have the following form: 

𝑥1
1 + 𝑥1

2 = 1; 

𝑥2
1 + 𝑥2

2 – 0.8𝑥1
1 – 0.9𝑥1

2 = 0; 

𝑥3
1 + 𝑥3

2 – 0.2𝑥1
1 – 0.1𝑥1

2 – 0.3𝑥2
1 – 0.6𝑥2

2 = 0; 

𝑥4
1 + 𝑥4

2 – 0.7𝑥2
1 – 0.4𝑥2

2 – 0.6𝑥3
1 – 0.5𝑥3

2 = 0; 

-0.4𝑥3
1 – 0.5𝑥3

2 – 0.8𝑥4
1 – 0.7𝑥4

2 + v5 = 0; 

-0.2𝑥4
1 – 0.3𝑥4

2  + v6 = 0; 

v5 + v6 = 1; 

𝑥1
1 ≥ 0; 𝑥1

2 ≥ 0; 𝑥2
1 ≥ 0; 𝑥2

2 ≥ 0; 𝑥3
1 ≥ 0; 𝑥3

2 ≥ 0; 𝑥4
1 ≥ 0; 𝑥4

2 ≥ 0; 

and the objective function is in the following form: 

L = 9𝑥1
1 + 10𝑥1

2 + 3𝑥2
1 + 2𝑥2

2 + 3𝑥3
1 + 4𝑥3

2 + 14𝑥4
1 + 15𝑥4

2→max. 

The solution to this problem of network-flow programming leads to the following mixed 

optimal. 

     𝑥1
1 = 0; 𝑥1

2 = 1; 𝑥2
1 = 0.9; 𝑥2

2 = 0; 𝑥3
1 = 0.37; 𝑥3

2 = 0; 𝑥4
1 = 0; 𝑥4

2 = 0.85; v5 = 0.74; v6 = 0.26. 

 The optimal linear form is equal to L = 26.59. 

It is assumed that for the MDP the probability of an adverse event is the same for all states and 

is equal to 0.18. Then, the missed profit when taking into account the risk is equal to  

Lr = pL = 26.59 x 0.18 = 4.79, 

and the overall reduction of the profit in L for the MDP with risks amounts to 

L′ = L - Lr = 26.59 – 4.79 = 21.80. 

B. If the probabilities of adverse events have different values of {𝑝𝑖
𝑘}, the risk is taken into 

account in the objective functions (2) and (14). Then 

𝑐𝑖
𝑘 = 𝑎𝑖

𝑘 − 𝑏𝑖
𝑘𝑝𝑖

𝑘 = 𝑎𝑖
𝑘 − 𝑑𝑖

𝑘; 

where 𝑑1
1 = 2; 𝑑1

2 =1.8; 𝑑2
1 = 0.5; 𝑑2

2 = 0.4; 𝑑3
1 = 0.7; 𝑑3

2 = 0.7; 𝑑4
1 = 4.5; 𝑑4

2 = 5.3. 

Summarized ratings are equal to: 

𝑐1
1 = 7; 𝑐1

2 =8.8; 𝑐2
1 = 2.5; 𝑐2

2 = 1.6; 𝑐3
1 = 2.3; 𝑐3

2 = 3.3; 𝑐4
1 = 9.5; 𝑐4

2 = 9.7. 

The objective function Lc is determined by 

Lc = 7𝑥1
1 + 8.8𝑥1

2 + 2.5𝑥2
1 + 1.6𝑥2

2 + 2.3𝑥3
1 + 3.3𝑥3

2 + 9.5𝑥4
1 + 9.7𝑥4

2→max. 

The solution of the network-flow optimization problem thus defined, results in the following 

optimal values of {𝑥𝑖
𝑘}, namely: 

𝑥1
1 = 0; 𝑥1

2 = 1; 𝑥2
1 = 0.9; 𝑥2

2 = 0; 𝑥3
1 = 0.37; 𝑥3

2 = 0; 

𝑥4
1 = 0; 𝑥4

2 = 0.85; v5 = 0.74; v6 = 0.26; Lc = 20.17. 

In Fig. 2 and Fig. 3. the optimal solutions for the two numerical examples are shown – A. и B., 

respectively. 
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Fig. 2 
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Lc = 20.17; 

 
Fig. 3 

Since the probabilities of adverse events {𝑝𝑖
𝑘} are selected so that their arithmetic mean is close 

to the constant probability 

p ~ 𝑝𝑖
𝑘; i ϵ I; k ϵ Ki; 

and the arcs’ratings are close to each other for the two numerical experiments – A. and B., the optimal 

solutions {𝑥𝑖
𝑘} in both cases coincide with each other. 

Characteristically, for the specific data of both experiments, pure policies are optimal rather 

than mixed ones, as can be seen from the null values of some {𝑥𝑖
𝑘}  in Fig. 2 and 3. 

In both cases - A. and B., the values obtained for L′ and Lc differ by 7% from each other. All 

this shows that both methods can work effectively. If the parameters {pij} are averaged, the simpler 

model A. will give approximately the same results as the model in case B. The numerical experiments 

performed support the research results obtained in the present work. 

The proposed controllable Markov processes with risks can find applications in a various areas 

of material production, services and public practice - in information and communication technologies, 

production processes and systems, organizational, financial and economic structures and processes, 

military, research and etc. 

 

CONCLUSION 

1. Introduction of network risks in Markov Decision Making Processes (MDP) is proposed in 

the present work. The risk is considered as product of multiplication of two measures: the probability 

the process to get into state i and the selection of a distinct action from this state, and the probability 

of an adverse event when passing through this state. 

2. A case study has been investigated where the probability of adverse events is the same across 

all process’s states and it is proved that this leads to a network Markov flow of risks, which one-to-

one mapped with a DMP with no risks. A number of results a received related to these two one-to-

one mapped processes. 
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3. A case is considered when the probabilities of adverse events are different in different states 

of the Markov process and it has been proved that in this case it is impossible to have a network 

Markov flow of risks. A method for determining the optimal solutions for this class of MDP with 

risks is proposed. 

4. A numerical example has been performed in which the optimal mixed policies for Markovian 

control of risks are determined from the specific data and the feasibility of the proposed theoretical 

results for MDP with risks has been proved. 

5. The possible areas for the application of such MDP with risks are pointed out. 
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