
Reports Awarded with "Best Paper" Crystal Prize‘19

36 Copyrights© 2020 ISBN 978-954-712-793-7 (Print)

FRI-2G.303-1-CST-03

ANALYSIS OF SOFTWARE TESTING TECHINQUES AND RESULTS

MEASUREMENT METRICS

Tsvetelina Mladenova, MEng

Department of Computer Systems and Technologies,

“Angel Kanchev” University of Ruse

Tel.: +359 884 292 155

E-mail: tsmladenova@uni-ruse.bg

Abstract: Software Quality Testing has always been a crucial factor when developing and delivering a product.

The process of software testing refers to the evaluation of the software with the intention of finding an error in it [1].

This paper reviews existing methods, techniques and web-based applications that create evaluate and measure

software tests. In the process of the literature review, several testing methods are considered and their application is

looked for in several existing systems. Some tests are being conducted and the results of every system is analysed and

compared. Software metrics have a direct link with the measurement of the software quality [2] and having the correct

measurement means is of an utter importance.

The goal of this study is to find the most suitable metrics and testing methods which will be used in the process

of developing a software testing module in an ERP system.

Keywords: Software Quality Testing, Software Metrics, Software Test Metrics, Software Development,

Software Development Life Cycle (SDLC), Testing Tools, Software Testing Tools

INTRODUCTION

The main goal of every software company is to deliver reliable, easy to use and high quality

product to its clients. In order to achieve that the company has to ensure that the product it sells is

error free and tested. The process of software testing refers to the evaluation of the software with

the intention of finding an error in it (Sawant, et al., 2012).

The purpose of this paper is to study the most used testing models, the types of testing

techniques and the metrics used when analyzing the results from the tests. The case study has the

intention of being a starting point for a web-based testing system which will create, evaluate and

analyze tests for software quality assurance.

EXPOSITION

Software Testing Main Principals

A common mistake among new and small software companies is the belief that their product

is good enough and it does not need a quality testing check. This is an error that won’t be seen in

companies which has time-tested values and believes.

Software testing tests the application for things such as reliability, usability, integrity,

security, capability, efficiency, etc.

The goals of every software evaluation are (Khajuria, 2018):

• Error detection - As this was already mentioned above, the main goal of the testing

procedure is to find errors. The number of found bugs in later stages of the

development will result in higher costs.

• Verification - The first stages of every software project are always gathering

functional requirements. One of the main goals of software testing is to ensure that

these requirements are met and done.

• Validation - The process of validation is similar to the verification but the main

difference is that on this step the client’s needs and requirements are per his wish and

necessity.

58th Annual scientific conference of University of Ruse and Union of Scientists, Bulgaria, 2019

Copyrights© 2020 ISBN 978-954-712-793-7 (Print) 37

• Customer satisfaction - After meeting the basic requirements a test cycle about the

whole client experience should be done. This means that not only the functional

requirements will be tested but also the visual ones.

• Quality - The whole purpose of software testing is to ensure that the final product will

be reliable, stable, secure, scalable, and accurate and will meet the standard of the

company that develops it.

Some authors are reducing the testing steps to just 4 – debugging, verification, validation

and defect (Hailpern, 2002). According to Hailpern and Santhanam, the process of debugging

involves analyzing the given program in order to find out if it meets the specifications. That process

is also referred as the process of “diagnosing the precise nature of a known error and then

correcting it” (Mayers, 1976). Here the processes of verification and validation are overlapping

with the definition of Khajura, Shabaz and Taneja (Khajuria, 2018). The last step, defect, is more

of a definition than a step. It states that every occurrence of a divergence from the specification

can be viewed as a bug and therefore should be corrected (IEEE Standard, 1989).

Software Testing Models

A quick overview of the most used development models shows that there is a big overlapping

between the terms for software development models and the ones for software testing. A more

exhaustive research shows that this is because every of this development models has a testing

phase implemented in it. The difference as expected is in the sequence and complexity of the

testing itself. This paper considers three of the most used models: Waterfall Model, V-Model and

Agile Model (Balaji & Sundararajan Murugaiyan, 2012).

1. Waterfall Model – particular for the model is that there is only one testing phase, at the

end of the Software Development Life Cycle (SDLC) (Fig. 1). Defects found at this

stage of the development costs more resources of the company and is inefficient. The

requirements should be clear at the beginning of the project and the output of every stage

is input of the next. That makes the management of the project harder and the testing

process unreliable.

REQUIREMENTS

SPECIFICATION

DESIGN

IMPLEMENTATION

MAINTENANCE

TESTING

Fig. 1 Waterfall Development and Testing Model

2. V-Model – the V-Model is a modification of the Waterfall Model originated by the

limitation of the Waterfall model in terms of testing phases. Fig. 2 shows that every

phase of the development is followed by a testing phase and very often the developers

and the testers are working parallel. Disadvantage of this model is the need for complete

update of the documentation and retesting if a change in the requirements is made. That

makes this model more suitable for the needs of today’s development methods.

Reports Awarded with "Best Paper" Crystal Prize‘19

38 Copyrights© 2020 ISBN 978-954-712-793-7 (Print)

REQUIREMENTS

ANALYSIS

SYSTEM DESIGN

ARCHITECTURE

DESIGN

MODULE DESIGN

CODING

UNIT TESTING

INTEGRATION

TESTING

SYSTEM TESTING

ACCEPTANCE

TESTINGACCEPTANCE TEST DESIGN

SYSTEM TEST DESIGN

INTEGRATION TEST DESIGN

UNIT TEST

Fig. 2 V-Model for Software Development and Testing

3. Agile Model – the agile model is the most flexible model among the three models

considered in this paper. A particular trait of this model is the fast development and

implementation of a ready product. The project can be split in stages (sprints) and the

client will receive updates, finished modules etc., in short periods of time. The division

of the project into seemingly smaller projects will guarantee that every sprint consist of

the five stages of development (Fig. 3). concerning the testing this is a complete cycle

of development and testing in time.

REQUIREMENT

GATHERING

PHASE

PLANNING &

DESIGNING

PHASE

DEVELOPMENT

PHASE

TESTING

PHASE

EVALUATION

PHASE

Fig. 3 Agile Development and Testing Model

Software Testing Life Cycle (STLC) and Software Testing Types

Regardless of the chosen model of development and testing the process itself consist of

several steps that need to be done in order for the test to be evaluated. As it was said before the

aim of every test is to find the errors in the application and to point them to developer which in

turn to fix them. Therefore some guides when creating a test should be followed. Fig. 4 shows a

basic STLC and the obligatory steps that should be taken when planning, creating and evaluating

a test. Following these steps every test creator should be able to decide what type of test will be

performed.

58th Annual scientific conference of University of Ruse and Union of Scientists, Bulgaria, 2019

Copyrights© 2020 ISBN 978-954-712-793-7 (Print) 39

Fig. 4 Software Testing Life Cycle

The types can be divided in three main categories – functional, non-functional and

maintenance. Fig. 5 shows the subcategorization of these three branches (Maheshwari, et al.,

2019).

The functional types of testing are performed when the requirements should be validated and

their implementation checked. This category consist of checks for unit functionalities, ways of

integration, error handling etc.

The non-functional testing is considered when the application will be tested for performance,

speed, load time and volume, usability, etc.

The maintenance tests are the ones that are mostly done at the end of the development cycle.

These types of verifications gives a guarantees that the program has been installed or uploaded

correctly and works in the production system of the client. There are several other cases when

maintenance verifications are used – when there have been made changes to the original code of

the program. Doing a maintenance check is mandatory in order to be sure that the new code is not

interfering with the old one (Maheshwari, et al., 2019).

Functional

Maintenance

Non-Functional

Testing

Unit
Integration
Smoke / Sanity
User Acceptance
Localization
Globalization
Interoperability
etc.

Regression
Maintenance

Performance
Endurance
Load
Volume
Scalability
Usability
etc.

Fig. 5 Software Testing Types

Result Metrics

It’s said that “you can’t manage, what you can’t measure” (Tom, 1986). Coming from that

statement the role of the result metrics is critical.

The process of testing itself can’t give enough information about the quality of the product,

and if the standards of the development company have been followed. The testing will give the

Reports Awarded with "Best Paper" Crystal Prize‘19

40 Copyrights© 2020 ISBN 978-954-712-793-7 (Print)

number of defects in the program and will be a guide to the developers when fixing the said defects.

But if planned right the testing can gather enough data which can be further analyzed and

transformed so that the simple process of testing a program can become an existential part of the

project management.

Every phase of evaluation should end with deep analyzation of the collected data and

conclusions about the quality of the product and the team. In order to do that a set of result metrics

should be used. They can give an overview of the development process and be an indicator for the

future work of the team. The set of metrics should be carefully selected so that they are adequate

for the specific project.

Product Metrics

The so-called “Product Metrics” are used when we want to measure the size and complexity

of the program (Belachew, et al., 2018). The size of the program is a factor when considering the

quality of the software originating from the assumption that the longer the program is the better

it’s been developed. Of course that can’t be enough affirmation but it’s considered among other

metrics.

A disadvantage of sorts is that these types of metrics are only available once the product has

been developed. Therefore they can’t have a predictive character.

These metrics can measure external and internal attributes of the products – software

usability and reusability, correctness, complexity, testability (Bhatti, n.d.).

Cyclomatic Complexity

The cyclomatic complexity metrics was first proposed by Thomas McCabe in 1976 for

measuring the software especially for the Design phase (A. H, 1996). The process of measurement

views the program as a graph. The cyclomatic number is the number of paths to reach the entire

graph. That technique is good enough for small programs but when the software is long it becomes

harder to count the number of paths. McCabe then proposes counting the number of the basic paths

instead of all paths. The Cyclomatic Complexity can be expressed as the following equation:

𝑽 (𝑮) = 𝑬 − 𝑵+ 𝟐𝑷 (1)

Where:

V (G) – Cyclomatic Complexity

E – Number of edges

N – Number of nodes

P – Number of connected components or parts

Process Metrics

Process metrics are used when the developers and the team leaders want to get an overview

of the number of defects found, the time it took for the developers to fix them, testing time and

other quality related factors and indicators.

The measuring of these types of metrics can begin as soon as the development begins and

that makes them appropriate for time predictions and quality control.

In many cases when teams wants to make performance optimizations they analyze the

results from these metrics from previous projects.

Table 1 shows some of the testing process metrics summarized by (Lee & Chang, 2013)

and proposed by (Premal & Kale, 2011), (Kaur, et al., 2007) and (Farooq & Quadri, 2011).

58th Annual scientific conference of University of Ruse and Union of Scientists, Bulgaria, 2019

Copyrights© 2020 ISBN 978-954-712-793-7 (Print) 41

Table 1. Process Test Metrics

Test Metric Definition Formula

Test Case Productivity (TCP) Gives an overview of the

productivity

Total Test Row Steps / Efforts

(Hours)

Test Case Effectiveness

(TCE)

Gives the relation between the

number of defects detected

during testing and the total

number of found defect in the

program

Dt / (Df + Du) * 100

Test Efficiency (TE) Determines the efficiency of

the testing team and gives an

indicator of the defects missed

out during the testing phase

Dt / (Dt + Du) * 100

Bad Fix Defect (BFD) Defects who when fixed

resulted in a new defect are

considered bad fix defects

 Number of Bad Fix Defects /

Total Number of valid Defects

* 100%

Defects Rejected Percentage

(DRP)

Number of falsely marked

defects

(Number of rejected defects /

Number of Total Defects) *

100

Critical Defects (CD) Number of critical defects

found

(Number of Critical Defects /

Number of Total Defects) *

100

Test Improvement (TI) Shows the relation between

the number of defects found

by the testers and the number

of line codes

 Number of Defects / Source

lines of code in thousands

Test Cost as a ration of

Development Cost (TCD)

Shows the relation between

testing cost and development

cost

Total cost of testing / Total

cost of development of the

product

CONCLUSION

This paper consist of the main three development and testing models, categorization of

testing types and an overview of the metrics used when analysing the results from the tests

evaluation.

The metrics presented in this paper are enough to give a team manager a detailed view of

the quality of the development and the developed product.

The goal was to make an observation of the most used models, types and analyzation

methods in order to plan and develop a testing tool that considers these factors. The tool should be

able to track the development process as well as the tests execution.

ACKNOWLEDGEMENT

The study was supported by contract of University of Ruse “Angel Kanchev”, №

BG05M2OP001-2.009-0011-С01, " Support for the development of human resources for research

and innovation at the University of Ruse “Angel Kanchev”. The project is funded with support

from the Operational Program " Science and Education for Smart Growth 2014 - 2020" financed

by the European Social Fund of the European Union.

Reports Awarded with "Best Paper" Crystal Prize‘19

42 Copyrights© 2020 ISBN 978-954-712-793-7 (Print)

REFERENCES

A. H, T. J., 1996. Structured Testing: A Testing Methodology using the Cyclomatic

Complexity Metric, s.l.: National Institute of Standards and Technology Gaithensburg.

Balaji, S. & Sundararajan Murugaiyan, D. M., 2012. Waterfall Vs V-Model Vs Agile: A

Comparative Study on SDLC. International Journal of Information Technology and Business

Management, 2(1).

Belachew, E., Gobena, F. & Nigatu, S., 2018. Analysis of Software Quality Using Software

Metrics. International Journal of Computational Science & Application, Volume 8.

Bhatti, H. R., n.d. Automatic Measurement of Source Code Complexity, s.l.: Master's Thesis

Computer Science and Engineering Lulea University of Technology.

Farooq, S. U. & Quadri, A. M. K., 2011. Software measurements and metrics: Role in

effective software testing. International Journal of Engineering Science and Technology, 3(1), pp.

671-680.

Hailpern, B. S. P., 2002. Software debugging, testing and verification. IBM System Journal,

41(1), p. 4.

IEEE Standard, 1989. IEEE Guide to the Use of IEEE Standard Dictionary of Measures to

Produce Reliable Software. New York: IEEE Standard 982.2-1988.

Kaur, A., Suri, B. & Sharma, A., 2007. Software Testing product metrics - a survey.

Proceedings of National Conference on Challenges & Opportunities in Information Technology.

Khajuria, V. S. M. T. N., 2018. Software Testing: A Error Finding Technique. 7(2277-2723),

p. 318.

Lee, M.-C. & Chang, T., 2013. Software Measurement and Software Metrics in Software

Quality. International Journal of Software Engineerins and Its Applications, 7(4).

Maheshwari, H., Rana, I. & Goswami, P., 2019. A REVIEW OF TOOLS AND

TECHNIQUES USED IN SOFTWARE TESTING. JETIR, 6(4), pp. 262-266.

Mayers, G., 1976. Software Reliability: Principles and Practises, New York: John Wiley and

Sons, Inc..

Premal, B. N. & Kale, K. V., 2011. A brief overview of software testing metrics.

International Journal of Computer Science and Engineering, 1(3/1), pp. 204-211.

Sawant, A. A., Bari, P. H. & Chawan, P. M., 2012. Software Testing Techniques and

Strategies. s.l., s.n., pp. 980 - 986.

Tom, D. A., 1986. Controling Software Projects. s.l.:New York: Yourdon Press.

