
PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 20 -

FRI-ONLINE-1-CCT1-02

DISTRIBUTED RING-BASED MUTUAL EXCLUSION WITH GRACEFUL
DEGRADATION2

Assoc. Prof. Milen Loukantchevsky, PhD, IEEE & ACM Member
Department of Computer Systems & Technologies,
University of Ruse “Angel Kanchev”
phone: 0877 303 850
e-mail: mil@ieee.org

Abstract: Under "mutual exclusion" is understood preventing of any opportunity more than one active object

(process, thread, task) to access a shared resource at a time. The distributed ring-based (aka token-ring) mutual exclusion
algorithm is executed over logical circular topology. Mainly due the chosen topology the ring-based algorithm is the
simplest of this kind. Its pros are simplicity and minimalistic preliminary information required to be known a priori from
each system process. The main drawback of this attractive algorithm in its basic definition is the strong presumption of
absolute system reliability which makes it impractical. After all, the failure model of distributed systems itself assumes
that failures should not be treated as exceptions but as a norm.

In a previous work is described a fault-tolerant version of the classical distributed ring-based mutual exclusion
algorithm without communication ring reconfiguration (Scheme 1). Here is described a modified version of that algorithm
(Scheme 2) with special kind of ring reconfiguration - graceful degradation. Both recovery schemes guarantee failure
recovery from any kind of multiple faults, and thus eliminate presumption of full system reliability. In the Scheme 1 the
recovery of a faulty process is awaited to recover full system availability. With here proposed Scheme 2 the system
recovery begins as soon as a process failure is detected. This is at the expense of excluding of the faulty process from the
system configuration. That leads to shrinking of the ring (one-way resiliency) and represents a kind of graceful
degradation. Compared to the first scheme, the second is more operational as it eliminates the delay needed to repair the
faulty process. In addition, the next recovery Scheme 3 means to stretching of the ring for two-way resiliency.

Keywords: Distributed Systems, Fault-tolerance, Failure Recovery, Mutual Exclusion, Resiliency, Token-Ring
ASJC Codes: 1701, 1712

INTRODUCTION
The mutual exclusion (ME) was first introduced by Edsger Dijkstra thus marking the computer

science of concurrency [9]. The problem is to prevent any opportunity more than one active object
(process, task, thread, etc.) to access a shared resource at a time. While in multitasking operating
systems this is ensured by global system variables under kernel control (known usually as kernel
objects), in distributed systems the solution is based on the idea of the critical section. Where the
critical section is defined a section of the code of the active object in which the shared resource is
accessed [1, 3, 5, 6, 11, 13, 14]. The difference is imposed by the different underlying computational
models – global vs distributed memory model [3, 4, 12]. The main consequence in the second case is
the need to use message passing over communication channels as the only means of inter process
interaction.

There are three requirements for distributed mutual exclusion algorithms: safety (ME1),
liveness (ME2) and fairness (ME3). Where the first two are mandatory, while the latter one is optional.

Distributed mutual exclusion algorithms are split into two big families: permission based and
token-based [13]. One of the most popular token-based algorithms is the circular aka ring-based or
token-ring one. It supposes homogeneous system from 𝑛𝑛 identical processes 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛 connected
in a logical circular topology. The canonical scheme of a such ring-based distributed system consisted
for example of 𝑛𝑛 = 6 processes is shown at Fig. 1.

There is a single ME token, a service message that moves in the communication ring clockwise.
As only the process possessing the ME token can be in the critical section, the safety requirement
ME1 is satisfied. The liveness requirement ME2 is satisfied by the circular topology itself, since the

2 Докладът е представен на заседание на секция 3.2 на 29 октомври 2021 с оригинално заглавие

DISTRIBUTED RING-BASED MUTUAL EXCLUSION WITH GRACEFUL DEGRADATION

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 21 -

ME token eventually will arrive into every one process over the ring. The ME token is generated once
by the process with the largest identifier, called coordinator (the 𝑃𝑃6 in our example). The coordinator
is determined during the system initialization by a distributed election algorithm [3, 5, 6]. Should be
noted that the ordering of the processes in the ring is irrelevant (at Fig. 1 they are arranged
consecutively for convenience only).

Fig. 1. The canonical scheme of a ring-based distributed system (𝑛𝑛 = 6).

A major disadvantage of this basic variant of the ring-based distributed mutual exclusion
algorithm is the requirement of absolute system reliablity - neither processes nor channels could crash.

That is the reason to formulate our objective: through suitable modification to overcome the
main shortcoming of the basic algorithm - the inadmissibility of process failures.

EXPOSITION
1. Failure Recovery Schemes
When talk about failure recovery we should first clarify the process failure as a failure of the

process 𝑃𝑃𝑖𝑖 itself, a failure of the section of the input channel of the 𝑃𝑃𝑖𝑖 or a failure of the section of the
output channel for which 𝑃𝑃𝑖𝑖 is responsible for (Fig. 2). The simplest failure class, supposed here, is
fail-stop.

Fig. 2. Graphical interpretation of the process failure

Three working recovery schemes are considered through the overall project "Class of Fault-
Tolerant Distributed Algorithms for Mutual Exclusion over Elastic Logical Ring Topology". They
evolve consistently and complement each other:

• Scheme 1 (Failure Recovery Without Reconfiguration)
• Scheme 2 (Failure Recovery with One-way Reconfiguration)
• Scheme 3 (Failure Recovery with Two-way Reconfiguration)

Under Scheme 1 is assumed that no changes in the system configuration are made. In case of a
process failure the hole system stops (at least in respect to ME algorithm). Only after the faulty process
is restored, all other processes resume normal operation from the state they were in at the time of the
failure and thereafter the ME token is restored. In doing so, strict compliance with the ME1 and ME2
requirements is ensured. This modified distributed ring-based mutual exclusion algorithm designated
as Mx1ME allows distributed system recovery from multiple faults [7].

With Scheme 2 the system recovery begins as soon as a process failure is detected. This is at
the expense of excluding of the faulty process from the system configuration. That leads to ring
shrinking (one-way resiliency) and represents a kind of graceful degradation. Compared to the first

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 22 -

scheme, the second one is more operational as eliminates the time to repair of the faulty process. The
whole system resumes its normal operation with latency determined by the next times: the time to
detect the process failure, the time to isolate of the faulty process, the time to recover of the ME
marker.

As an example, at Fig. 3 is shown the shrinking of the initial ring configuration (Fig. 1) as result
of consecutive or even simultaneous failures of processes 𝑃𝑃2,𝑃𝑃4 and 𝑃𝑃5. This recovery scheme
guarantees recovery from any fail-stop process failures until an acceptable system degradation to
minimum of 𝑘𝑘 faultless processes, where 1 < 𝑘𝑘 ≤ 𝑛𝑛. Such a system is fault-tolerant or (n-k) resilient,
where (n-k) is the number of failures overcome. The maximum possible one-way resiliency is (n-1)
when the ring collapses into one (!) point.

Fig. 3. Reconfiguration with graceful degradation

Scheme 3 supposes both exclusion of the faulty processes and inclusion (injection) of faultless
spare processes (despite if this is a recovered or a “fresh” one process) as replacement of faulty ones.
Apparently, it is a kind of ring stretching. So, combining both Scheme 2 and Scheme 3 the
communication ring acquires the property of elasticity or two-way resiliency.

2. Chain of Algorithms for Resilient Ring-Based Distributed Mutual Exclusion
The first of the above series of recovery schemes is Scheme 1. Its restriction to recovery without

ring reconfiguration allows to solve the fundamental tasks: the detection of a process failure and the
ME token management [7]. Respectively modified distributed mutual exclusion algorithm, namely
Mx1ME, is last in the chain of helper distributed algorithms:

• Output Channel Error Handling Algorithm, CEH;
• Communication Ring Checkup Algorithm, RUP;
• Distributed Ring-based Election Algorithm, E;
• Token Management and Recovery Algorithm, MrkME;
• Distributed Mutual Exclusion with Failure Recovery, Mx1ME.

The CEH algorithm executed by the process 𝑃𝑃𝑖𝑖 is responsible for detection of its immediate
neighbor failure while MrkME algorithm is responsible for the ME token management and recovery.
It ensures that there is one and only one active ME token in the ring, according to strong ME1 and
ME2 requirements. In other words, it resolves not only the lost token problem [1] but also the no-
duplicated token problem. Hence this algorithm is crucial for recovery from failures. The full
formalized specs of the algorithms included in the above chain is available in __SPECS__\1.Scheme
1 subfolder of the appropriate GitHub repository [8]. Please note that the pseudo-code of
MrkME::OnRelease event handler presented in [8] is changed to

OnRelease:

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 23 -

If state = HELD
state := RELEASED
If MrkME::strClrPending != NULL

MrkME::OnClear()
MrkME::strClrPending := NULL

Else
Send <mrk_me, Tj>

End If
End If

The above rectification is necessary for the correct recovery in case of the coordinator failure

in HELD state.
The next step forward is one-way reconfiguration Scheme 2 achieved through modification of

the CEH and the RUP algorithms into the CEH.GD and the RUP.GD, respectively. Thus, we get the
next chain of helper distributed algorithms under Scheme 2:

• Output Channel Error Handling Algorithm, CEH.GD;
• Communication Ring Checkup Algorithm, RUP.GD;
• Distributed Ring-based Election Algorithm, E;
• Token Management and Recovery Algorithm, MrkME;
• Distributed Mutual Exclusion with Failure Recovery, Mx1ME.GD.

Where, in fact, the Mx1ME.GD equals Mx1ME. The difference in the names only reflects the
difference in first two helper distributed algorithms use.

3. Output Channel Error Handling Algorithm CEH.GD

As said above, the CEH algorithm executed by the process 𝑃𝑃𝑖𝑖 is responsible for detection of its
immediate neighbor failures and for reconnection with this neighbor. The error detection phase is
based on the wide used timeout mechanism [2] with assumption for synchronous distributed system
[3, 5]. This phase is in general identical in both Scheme 1 and Scheme 2. The difference between them
is localized in the reconnection phase. At the Scheme 1, if the limit MAX_CEH_ERR of reconnection
attempts is exhausted, the recovery failed. While at the Scheme 2 this leads to exclusion of the current
neighbor as faulty one and initiation of new series of reconnection attempts with the process after the
faulty neighbor, considering him as a new likely neighbor. So redesigned algorithm CEH.GD requires
additional information – the list of identifiers of all processes along the ring. The appropriate internal
variable ListPIds (ALGORITHM 1.1) could be set statically at system startup or dynamically during
ring checkup algorithm RUP.GD (ALGORITHM 1.2). This is controlled by the boolean AutoList.

For the example of Fig. 1 we have
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 = {𝑃𝑃2,𝑃𝑃3, … ,𝑃𝑃6,𝑃𝑃1},
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 = {𝑃𝑃3,𝑃𝑃4, … ,𝑃𝑃1,𝑃𝑃2},
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3 = {𝑃𝑃4,𝑃𝑃5, … ,𝑃𝑃2,𝑃𝑃3},
…
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴6 = {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃5,𝑃𝑃6},
The generalized formal specification of CEH.GD algorithm consists of a declarative part

(ALGORITHM 1.1) and a definition of event handlers (ALGORITHM 1.2).

ALGORITHM 1.1: Declarative Part of Pi::CEH.GD.Auto
{SYSTEM CONSTANTS}
Int MAX_CEH_PERIOD // period between reconnection attempts
Int MAX_CEH_ERR // maximum reconnection attempts
Int MIN_K // min number of faultless processes (max degradation), 1 ≤ MIN_K
PId i // process Pi identifier
PId j // default neighbor process Pj
Bool AutoList // <true> if ListPIds is to be filled during RUP.GD.Auto
 // <false> if ListPIds is known in advance (RUP used)
{SET OF STATES}
<State> := {INIT, CLOSED, OPENED, FAULTY}

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 24 -

{INTERNAL STATE SPACE}
State state // current process CEH state
RUP::state // current process RUP state
Int ErrorCounter // error counter
Timer TimerCEH // timer
List ListPIds // list of process identifiers
PId PIdNext // current neighbor process identifier

The definitive part of the CEH.GD (ALGORITHM 1.2) of course should be consistent with the

reactive character of the distributed systems – the system is in a stable state until some predefined
event brought it to another stable state. That is why this part consists of the handlers of all events
caught.

ALGORITHM 1.2: Event Handlers of Pi::CEH.GD.Auto
OnInit:

state := INIT
ErrorCounter := 0
TimerCEH.Interval := MAX_CEH_PERIOD
ListPIds.Set()
If AutoList = true

ListPIds.Clear()
PIdNext := j

Else
ListPIds.Set()
PIdNext := ListPIds.PopFront()

End If

OnShow:

ErrorCounter := 0
ChannelOut.Open()

OnOutputConnect:

state := OPENED
ErrorCounter := 0
{Start Ring Check Up Algorithm}

OnOutputDisconnect:

state := CLOSED
ErrorCounter := 0
TimerCEH.Start()

OnOutputError:

state := CLOSED
ErrorCounter := ErrorCounter + 1
If ErrorCounter < MAX_CEH_ERR

TimerCEH.Start()
Else

If ((AutoList = false) ∪ (RUP::state = UP)) ∩ (ListPids.Size() ≥ MIN_K)
PIdNext := ListPIds.PopFront()
ErrorCounter := 0
TimerCEH.Start()

Else
{UNRECOVERABLE FAILURE}

End If
End If

OnTimer:

TimerCEH.Stop()
ChannelOut.Open()

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 25 -

4. Communication Ring Checkup Algorithm RUP.GD
The RUP algorithm is used for communication ring integrity checkup. It starts just after the

connection with the immediate neighbor is established. In turn, when it is over, starts the next link of
the chain – the distributed ring-based election algorithm E.

The generalized formal specification of RUP.GD algorithm consists as well of declarative part
(ALGORITHM 2.1) and definition of event handlers (ALGORITHM 2.2).

ALGORITHM 2.1: Declarative Part of Pi::RUP.GD.Auto
{SYSTEM CONSTANTS}
Int MAX_RUP_PERIOD // period to next check
String MRK_RUP // message type „RUP Token“
String MRK_RUP2 // message type „RUP AutoList Token“
PId i // process Pi identifier
PId j // default neighbor process Pj
CEH::AutoList // <true> if ListPIds is to be filled during RUP
 // <false> if ListPIds is known in advance
{MESSAGES}
<mrk_rup, i>
<mrk_rup2, i, list>

{SET OF STATES}
<State> := {INIT, DOWN, UP}

{INTERNAL STATE SPACE}
State state // current process RUP state
Timer TimerRUP // timer
CEH::ListPIds // list of process identifiers
CEH::PIdNext // current neighbor process identifier

The definitive part of the RUP.GD (ALGORITHM 2.2) is consistent with the reactive character

of the distributed systems too.

ALGORITHM 2.2: Event Handlers of Pi::RUP.GD.Auto
OnInit:

state := INIT
TimerRUP.Interval := MAX_RUP_PERIOD

OnOutputConnect:

{Ring Check Up First Attempt}
state := DOWN
If CEH::AutoList = true

Send <mrk_rup2, i, list.Clear()>
Else

Send <mrk_rup, i>
End If
TimerRUP.Start()

OnOutputDisconnect:

state := DOWN

OnOutputError:

state := DOWN

OnReceiptOf <mrk_rup, j> ∪ OnReceiptOf <mrk_rup2, j, list>:

If j = i
TimerRUP.Stop()
state := UP
list.Add(i)
ListPIds := list

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 26 -

{Distributed Election Entry Point}
E::OnStartElection()

Else
If CEH::AutoList = true

Send <mrk_rup2, j, list.Add(i)>
Else

Send <mrk_rup, j>
EndIf

End If

OnTimer:

{Ring Check Up Next Attempt}
TimerRUP.Stop()
If CEH::AutoList = true

Send <mrk_rup2, i, list.Clear()>
Else

Send <mrk_rup, i>
End If
TimerRUP.Start()

Should be noted that when 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 the RUP.GD algorithm is sensitive to failures.

Really, any failure while given process executes ring checkup leads to incomplete LisPIds and
therefore to impossibility for subsequent graceful degradation. Therefor to prevent such
incompleteness graceful degradation should be forbidden during RUP.GD procedure, as provided in
CEH.GD::OnOutputError event handler (ALGORITHM 1.2).

CONCLUSION
Three working recovery schemes are considered within the overall project "Class of Fault-

Tolerant Distributed Algorithms for Mutual Exclusion over Elastic Logical Ring Topology". They
evolve consistently and complement each other: Scheme 1 (Failure Recovery Without
Reconfiguration), Scheme 2 (Failure Recovery with One-way Reconfiguration) and Scheme 3 (Failure
Recovery with Two-way Reconfiguration). In this article the emphasis is on Scheme 2.

The consideration is made by the evolving from one scheme to another. The chain of helper
distributed algorithms, as part of the modified distributed mutual exclusion algorithm, namely
Mx1ME, is presented. With appropriate modifications of the first two of them (the CEH and the RUP)
the possibility of one-way reconfiguration is achieved. The generalized formal specifications of those
two algorithms are presented. They are consistent with the reactive character of the distributed
systems and therefor consist of the handlers of events caught.

The algorithm test bed is implemented with the Embarcadero C++ Builder® development
environment and its Clang-enhanced C++ compiler. The evolution of the test bed can be traced on
the author’s GitHub repository [8].

The implementation is focused on the exploration of the algorithm as well as on the promotion
of its practical usage. All working recovery schemes proposed are incorporated and could be explored
separately or jointly.

Due to the features of the socket mechanism of communications and the setup configuration
provided there are two possible modes of test bed execution: LDM (Local Distributed Mode) or RDM
(Real Distributed Mode). The LDM is used during development, while RDM – after deployment.
Mapping from LDM to RDM is isomorphic [7].

The discussions of the last recovery scheme (Scheme 3) as well as the experimental results
obtained and timing analysis are subject of subsequent publications because of the space restrictions
given.

REFERENCES
[1] Banerjee, S., P. Chrysanthis. (1996). A New Token Passing Distributed Mutual Exclusion

Algorithm. In Proceedings of the Intl. Conf. on Distributed Computing Systems (ICDCS). Retrieved

PROCEEDINGS OF UNIVERSITY OF RUSE - 2021, volume 60, book 3.2.

 - 27 -

Nov. 30, 2021,
https://www.researchgate.net/publication/2666403_A_New_Token_Passing_Distributed_Mutual_E
xclusion_Algorithm

[2] Christian, C., R. Guerraoui, L. Rodrigues. (2011). Introduction to Reliable and Secure
Distributed Programming. 2nd Ed. Springer-Verlag Berlin Heidelberg, p. 386 pages, ISBN 978-
3642152597.

[3] Coulouris, G., et al. (2011). Distributed Systems: Concepts and Design. 5th Ed. – Boston:
Addison-Wesley, p. 1008.

[4] Kleinrock, L. (1985) Distributed Systems. Communications of the ACM, Vol. 28, Num. 11,
pp. 1200-1213.

[5] Kshemkalyani, A.D., M. Singhal. (2008). Distributed Computing: Principles, Algorithms,
and Systems. – Cambridge: Cambridge University Press, p. 736.

[6] Loukantchevsky, M. (2014). Distributed Systems: Theory and Practice. Ruse University
Press, Ruse, p. 212, ISBN 978-619-7071-35-1.

[7] Loukantchevsky, M. (2020). Distributed Ring-based Mutual Exclusion with Failure
Recovery. Proceedings of 21-th International Conference on Computer Systems and Technologies.
ACM, New York, NY, USA, 2020, pp. 111-115, ISBN 978-1-4503-7768-3, DOI:
https://doi.org/10.1145/3407982.3408014

[8] Loukantchevsky, M. (2021). XME Ring GitHub Repository. Retrieved Nov. 30, 2021,
https://github.com/milphaser/XME.Ring

[9] Malkhi, D. Concurrency: the Works of Leslie Lamport. (2019). ACM, New York, NY, USA,
2020, p.366, ISBN:978-1-4503-7270-1, DOI: https://doi.org/10.1145/3335772

[10] Mohammed, A., R. Kavuri, N. Upadhyaya. (2012). Fault tolerance: case study.
Proceedings of the Second International Conference on Computational Science, Engineering and
Information Technology, October 2012, pp. 138–144, DOI:
https://doi.org/10.1145/2393216.2393240

[11] Parihar, A.S., S.K. Chakraborty. (2021). Token-based approach in distributed mutual
exclusion algorithms: a review and direction to future research. The Journal of Supercomputing,
Springer Nature, May 2021, pp. 1-51, DOI: https://doi.org/10.1007/s11227-021-03802-8

[12] Ralston, A., E. Reilly, D. Hemmendinger. (2003). Encyclopedia of Computer Science. 4th
Ed. - Chichester: John Wiley and Sons Ltd. , ISBN: 978-0-470-86412-8, p. 2080.

[13] Raynal, M. (1991). A simple taxonomy for distributed mutual exclusion algorithms. ACM
SIGOPS Operating Systems Review, Volume 25, Issue 2, April, pp. 47-50.

[14] Saxena. P.C., J. Rai. (2003). A survey of permission-based distributed mutual exclusion
algorithms. Computer Standards & Interfaces, Volume 25, Issue 2, 2003, pp. 159-181, ISSN 0920-
5489, DOI: https://doi.org/10.1016/S0920-5489(02)00105-8.

https://www.researchgate.net/publication/2666403_A_New_Token_Passing_Distributed_Mutual_Exclusion_Algorithm
https://www.researchgate.net/publication/2666403_A_New_Token_Passing_Distributed_Mutual_Exclusion_Algorithm
https://doi.org/10.1145/3407982.3408014
https://github.com/milphaser/XME.Ring
https://doi.org/10.1145/3335772
https://doi.org/10.1145/2393216.2393240
https://doi.org/10.1007/s11227-021-03802-8
https://doi.org/10.1016/S0920-5489(02)00105-8

