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Abstract: Under "mutual exclusion" is understood preventing of any opportunity more than one active object 

(process, thread, task) to access a shared resource at a time. The distributed ring-based (aka token-ring) mutual exclusion 
algorithm is executed over logical circular topology. Mainly due the chosen topology the ring-based algorithm is the 
simplest of this kind. Its pros are simplicity and minimalistic preliminary information required to be known a priori from 
each system process. The main drawback of this attractive algorithm in its basic definition is the strong presumption of 
absolute system reliability which makes it impractical. After all, the failure model of distributed systems itself assumes 
that failures should not be treated as exceptions but as a norm. 

In a previous work is described a fault-tolerant version of the classical distributed ring-based mutual exclusion 
algorithm without communication ring reconfiguration (Scheme 1). Here is described a modified version of that algorithm 
(Scheme 2) with special kind of ring reconfiguration - graceful degradation. Both recovery schemes guarantee failure 
recovery from any kind of multiple faults, and thus eliminate presumption of full system reliability. In the Scheme 1 the 
recovery of a faulty process is awaited to recover full system availability. With here proposed Scheme 2 the system 
recovery begins as soon as a process failure is detected. This is at the expense of excluding of the faulty process from the 
system configuration. That leads to shrinking of the ring (one-way resiliency) and represents a kind of graceful 
degradation. Compared to the first scheme, the second is more operational as it eliminates the delay needed to repair the 
faulty process. In addition, the next recovery Scheme 3 means to stretching of the ring for two-way resiliency. 
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INTRODUCTION 
The mutual exclusion (ME) was first introduced by Edsger Dijkstra thus marking the computer 

science of concurrency [9]. The problem is to prevent any opportunity more than one active object 
(process, task, thread, etc.) to access a shared resource at a time. While in multitasking operating 
systems this is ensured by global system variables under kernel control (known usually as kernel 
objects), in distributed systems the solution is based on the idea of the critical section. Where the 
critical section is defined a section of the code of the active object in which the shared resource is 
accessed [1, 3, 5, 6, 11, 13, 14]. The difference is imposed by the different underlying computational 
models – global vs distributed memory model [3, 4, 12]. The main consequence in the second case is 
the need to use message passing over communication channels as the only means of inter process 
interaction. 

There are three requirements for distributed mutual exclusion algorithms: safety (ME1), 
liveness (ME2) and fairness (ME3). Where the first two are mandatory, while the latter one is optional. 

Distributed mutual exclusion algorithms are split into two big families: permission based and 
token-based [13]. One of the most popular token-based algorithms is the circular aka ring-based or 
token-ring one. It supposes homogeneous system from 𝑛𝑛 identical processes 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛 connected 
in a logical circular topology. The canonical scheme of a such ring-based distributed system consisted 
for example of 𝑛𝑛 = 6 processes is shown at Fig. 1. 

There is a single ME token, a service message that moves in the communication ring clockwise. 
As only the process possessing the ME token can be in the critical section, the safety requirement 
ME1 is satisfied. The liveness requirement ME2 is satisfied by the circular topology itself, since the 
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ME token eventually will arrive into every one process over the ring. The ME token is generated once 
by the process with the largest identifier, called coordinator (the 𝑃𝑃6 in our example). The coordinator 
is determined during the system initialization by a distributed election algorithm [3, 5, 6]. Should be 
noted that the ordering of the processes in the ring is irrelevant (at Fig. 1 they are arranged 
consecutively for convenience only). 

 
Fig. 1. The canonical scheme of a ring-based distributed system (𝑛𝑛 = 6). 

A major disadvantage of this basic variant of the ring-based distributed mutual exclusion 
algorithm is the requirement of absolute system reliablity - neither processes nor channels could crash.  

That is the reason to formulate our objective: through suitable modification to overcome the 
main shortcoming of the basic algorithm - the inadmissibility of process failures. 

 
EXPOSITION 
1. Failure Recovery Schemes 
When talk about failure recovery we should first clarify the process failure as a failure of the 

process 𝑃𝑃𝑖𝑖 itself, a failure of the section of the input channel of the 𝑃𝑃𝑖𝑖 or a failure of the section of the 
output channel for which 𝑃𝑃𝑖𝑖 is responsible for (Fig. 2). The simplest failure class, supposed here, is 
fail-stop. 

 
Fig. 2. Graphical interpretation of the process failure 

Three working recovery schemes are considered through the overall project "Class of Fault-
Tolerant Distributed Algorithms for Mutual Exclusion over Elastic Logical Ring Topology". They 
evolve consistently and complement each other: 

• Scheme 1 (Failure Recovery Without Reconfiguration) 
• Scheme 2 (Failure Recovery with One-way Reconfiguration) 
• Scheme 3 (Failure Recovery with Two-way Reconfiguration) 

Under Scheme 1 is assumed that no changes in the system configuration are made. In case of a 
process failure the hole system stops (at least in respect to ME algorithm). Only after the faulty process 
is restored, all other processes resume normal operation from the state they were in at the time of the 
failure and thereafter the ME token is restored. In doing so, strict compliance with the ME1 and ME2 
requirements is ensured. This modified distributed ring-based mutual exclusion algorithm designated 
as Mx1ME allows distributed system recovery from multiple faults [7]. 

With Scheme 2 the system recovery begins as soon as a process failure is detected. This is at 
the expense of excluding of the faulty process from the system configuration. That leads to ring 
shrinking (one-way resiliency) and represents a kind of graceful degradation. Compared to the first 
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scheme, the second one is more operational as eliminates the time to repair of the faulty process. The 
whole system resumes its normal operation with latency determined by the next times: the time to 
detect the process failure, the time to isolate of the faulty process, the time to recover of the ME 
marker. 

As an example, at Fig. 3 is shown the shrinking of the initial ring configuration (Fig. 1) as result 
of consecutive or even simultaneous failures of processes 𝑃𝑃2,𝑃𝑃4 and 𝑃𝑃5. This recovery scheme 
guarantees recovery from any fail-stop process failures until an acceptable system degradation to 
minimum of 𝑘𝑘 faultless processes, where 1 < 𝑘𝑘 ≤ 𝑛𝑛. Such a system is fault-tolerant or (n-k) resilient, 
where (n-k) is the number of failures overcome. The maximum possible one-way resiliency is (n-1) 
when the ring collapses into one (!) point. 

 
Fig. 3. Reconfiguration with graceful degradation 

Scheme 3 supposes both exclusion of the faulty processes and inclusion (injection) of faultless 
spare processes (despite if this is a recovered or a “fresh” one process) as replacement of faulty ones. 
Apparently, it is a kind of ring stretching. So, combining both Scheme 2 and Scheme 3 the 
communication ring acquires the property of elasticity or two-way resiliency. 

 
2. Chain of Algorithms for Resilient Ring-Based Distributed Mutual Exclusion 
The first of the above series of recovery schemes is Scheme 1. Its restriction to recovery without 

ring reconfiguration allows to solve the fundamental tasks: the detection of a process failure and the 
ME token management [7]. Respectively modified distributed mutual exclusion algorithm, namely 
Mx1ME, is last in the chain of helper distributed algorithms: 

• Output Channel Error Handling Algorithm, CEH; 
• Communication Ring Checkup Algorithm, RUP; 
• Distributed Ring-based Election Algorithm, E; 
• Token Management and Recovery Algorithm, MrkME; 
• Distributed Mutual Exclusion with Failure Recovery, Mx1ME. 

The CEH algorithm executed by the process 𝑃𝑃𝑖𝑖 is responsible for detection of its immediate 
neighbor failure while MrkME algorithm is responsible for the ME token management and recovery. 
It ensures that there is one and only one active ME token in the ring, according to strong ME1 and 
ME2 requirements. In other words, it resolves not only the lost token problem [1] but also the no-
duplicated token problem. Hence this algorithm is crucial for recovery from failures. The full 
formalized specs of the algorithms included in the above chain is available in __SPECS__\1.Scheme 
1 subfolder of the appropriate GitHub repository [8]. Please note that the pseudo-code of 
MrkME::OnRelease event handler presented in [8] is changed to 

 
OnRelease: 
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If state = HELD 
state := RELEASED 
If MrkME::strClrPending != NULL 

MrkME::OnClear() 
MrkME::strClrPending := NULL 

Else 
Send <mrk_me, Tj> 

End If 
End If 

 
The above rectification is necessary for the correct recovery in case of the coordinator failure 

in HELD state. 
The next step forward is one-way reconfiguration Scheme 2 achieved through modification of 

the CEH and the RUP algorithms into the CEH.GD and the RUP.GD, respectively. Thus, we get the 
next chain of helper distributed algorithms under Scheme 2: 

• Output Channel Error Handling Algorithm, CEH.GD; 
• Communication Ring Checkup Algorithm, RUP.GD; 
• Distributed Ring-based Election Algorithm, E; 
• Token Management and Recovery Algorithm, MrkME; 
• Distributed Mutual Exclusion with Failure Recovery, Mx1ME.GD. 

Where, in fact, the Mx1ME.GD equals Mx1ME. The difference in the names only reflects the 
difference in first two helper distributed algorithms use. 

 
3. Output Channel Error Handling Algorithm CEH.GD 

As said above, the CEH algorithm executed by the process 𝑃𝑃𝑖𝑖 is responsible for detection of its 
immediate neighbor failures and for reconnection with this neighbor. The error detection phase is 
based on the wide used timeout mechanism [2] with assumption for synchronous distributed system 
[3, 5]. This phase is in general identical in both Scheme 1 and Scheme 2. The difference between them 
is localized in the reconnection phase. At the Scheme 1, if the limit MAX_CEH_ERR of reconnection 
attempts is exhausted, the recovery failed. While at the Scheme 2 this leads to exclusion of the current 
neighbor as faulty one and initiation of new series of reconnection attempts with the process after the 
faulty neighbor, considering him as a new likely neighbor. So redesigned algorithm CEH.GD requires 
additional information – the list of identifiers of all processes along the ring. The appropriate internal 
variable ListPIds (ALGORITHM 1.1) could be set statically at system startup or dynamically during 
ring checkup algorithm RUP.GD (ALGORITHM 1.2). This is controlled by the boolean AutoList. 

For the example of Fig. 1 we have 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 = {𝑃𝑃2,𝑃𝑃3, … ,𝑃𝑃6,𝑃𝑃1}, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 = {𝑃𝑃3,𝑃𝑃4, … ,𝑃𝑃1,𝑃𝑃2}, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3 = {𝑃𝑃4,𝑃𝑃5, … ,𝑃𝑃2,𝑃𝑃3}, 
… 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴6 = {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃5,𝑃𝑃6}, 
The generalized formal specification of CEH.GD algorithm consists of a declarative part 

(ALGORITHM 1.1) and a definition of event handlers (ALGORITHM 1.2). 
 

ALGORITHM 1.1: Declarative Part of Pi::CEH.GD.Auto 
{SYSTEM CONSTANTS} 
Int MAX_CEH_PERIOD  // period between reconnection attempts 
Int MAX_CEH_ERR  // maximum reconnection attempts 
Int MIN_K   // min number of faultless processes (max degradation), 1 ≤ MIN_K 
PId i    // process Pi identifier 
PId j    // default neighbor process Pj 
Bool AutoList   // <true> if ListPIds is to be filled during RUP.GD.Auto 
    // <false> if ListPIds is known in advance (RUP used) 
{SET OF STATES} 
<State> := {INIT, CLOSED, OPENED, FAULTY} 
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{INTERNAL STATE SPACE} 
State state   // current process CEH state 
RUP::state   // current process RUP state 
Int ErrorCounter   // error counter 
Timer TimerCEH   // timer 
List ListPIds   // list of process identifiers 
PId PIdNext   // current neighbor process identifier 
 

 
The definitive part of the CEH.GD (ALGORITHM 1.2) of course should be consistent with the 

reactive character of the distributed systems – the system is in a stable state until some predefined 
event brought it to another stable state. That is why this part consists of the handlers of all events 
caught. 

 
ALGORITHM 1.2: Event Handlers of Pi::CEH.GD.Auto 
OnInit: 

state := INIT 
ErrorCounter := 0 
TimerCEH.Interval := MAX_CEH_PERIOD 
ListPIds.Set() 
If AutoList = true 

ListPIds.Clear() 
PIdNext := j 

Else 
ListPIds.Set() 
PIdNext := ListPIds.PopFront() 

End If 
 
OnShow: 

ErrorCounter := 0 
ChannelOut.Open() 

 
OnOutputConnect: 

state := OPENED 
ErrorCounter := 0 
{Start Ring Check Up Algorithm} 

 
OnOutputDisconnect: 

state := CLOSED 
ErrorCounter := 0 
TimerCEH.Start() 

  
OnOutputError: 

state := CLOSED 
ErrorCounter := ErrorCounter + 1 
If ErrorCounter < MAX_CEH_ERR 

TimerCEH.Start() 
Else 

If ((AutoList = false) ∪ (RUP::state = UP)) ∩ (ListPids.Size() ≥ MIN_K) 
PIdNext := ListPIds.PopFront() 
ErrorCounter := 0 
TimerCEH.Start() 

Else 
{UNRECOVERABLE FAILURE} 

End If 
End If 

 
OnTimer: 

TimerCEH.Stop() 
ChannelOut.Open() 
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4. Communication Ring Checkup Algorithm RUP.GD 
The RUP algorithm is used for communication ring integrity checkup. It starts just after the 

connection with the immediate neighbor is established. In turn, when it is over, starts the next link of 
the chain – the distributed ring-based election algorithm E. 

The generalized formal specification of RUP.GD algorithm consists as well of declarative part 
(ALGORITHM 2.1) and definition of event handlers (ALGORITHM 2.2). 
 
ALGORITHM 2.1: Declarative Part of Pi::RUP.GD.Auto 
{SYSTEM CONSTANTS} 
Int MAX_RUP_PERIOD  // period to next check 
String MRK_RUP   // message type „RUP Token“ 
String MRK_RUP2  // message type „RUP AutoList Token“ 
PId i    // process Pi identifier 
PId j    // default neighbor process Pj 
CEH::AutoList   // <true> if ListPIds is to be filled during RUP 
    // <false> if ListPIds is known in advance 
{MESSAGES} 
<mrk_rup, i> 
<mrk_rup2, i, list> 
 
{SET OF STATES} 
<State> := {INIT, DOWN, UP} 
 
{INTERNAL STATE SPACE} 
State state   // current process RUP state 
Timer TimerRUP   // timer 
CEH::ListPIds   // list of process identifiers 
CEH::PIdNext   // current neighbor process identifier 
 

 
The definitive part of the RUP.GD (ALGORITHM 2.2) is consistent with the reactive character 

of the distributed systems too. 
 

ALGORITHM 2.2: Event Handlers of Pi::RUP.GD.Auto 
OnInit: 

state := INIT 
TimerRUP.Interval := MAX_RUP_PERIOD 

 
OnOutputConnect: 

{Ring Check Up First Attempt} 
state := DOWN 
If CEH::AutoList = true 

Send <mrk_rup2, i, list.Clear()> 
Else 

Send <mrk_rup, i> 
End If 
TimerRUP.Start() 

 
OnOutputDisconnect: 

state := DOWN 
 
OnOutputError: 

state := DOWN 
 
OnReceiptOf <mrk_rup, j> ∪ OnReceiptOf <mrk_rup2, j, list>: 

If j = i 
TimerRUP.Stop() 
state := UP 
list.Add(i) 
ListPIds := list 
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{Distributed Election Entry Point} 
E::OnStartElection() 

Else  
If CEH::AutoList = true 

Send <mrk_rup2, j, list.Add(i)> 
Else 

Send <mrk_rup, j> 
EndIf 

End If 
 
OnTimer: 

{Ring Check Up Next Attempt} 
TimerRUP.Stop() 
If CEH::AutoList = true 

Send <mrk_rup2, i, list.Clear()> 
Else 

Send <mrk_rup, i> 
End If 
TimerRUP.Start() 

 

 
Should be noted that when 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 the RUP.GD algorithm is sensitive to failures. 

Really, any failure while given process executes ring checkup leads to incomplete LisPIds and 
therefore to impossibility for subsequent graceful degradation. Therefor to prevent such 
incompleteness graceful degradation should be forbidden during RUP.GD procedure, as provided in 
CEH.GD::OnOutputError event handler (ALGORITHM 1.2). 

 
CONCLUSION 
Three working recovery schemes are considered within the overall project "Class of Fault-

Tolerant Distributed Algorithms for Mutual Exclusion over Elastic Logical Ring Topology". They 
evolve consistently and complement each other: Scheme 1 (Failure Recovery Without 
Reconfiguration), Scheme 2 (Failure Recovery with One-way Reconfiguration) and Scheme 3 (Failure 
Recovery with Two-way Reconfiguration). In this article the emphasis is on Scheme 2.  

The consideration is made by the evolving from one scheme to another. The chain of helper 
distributed algorithms, as part of the modified distributed mutual exclusion algorithm, namely 
Mx1ME, is presented. With appropriate modifications of the first two of them (the CEH and the RUP) 
the possibility of one-way reconfiguration is achieved. The generalized formal specifications of those 
two algorithms are presented. They are consistent with the reactive character of the distributed 
systems and therefor consist of the handlers of events caught. 

The algorithm test bed is implemented with the Embarcadero C++ Builder® development 
environment and its Clang-enhanced C++ compiler. The evolution of the test bed can be traced on 
the author’s GitHub repository [8]. 

The implementation is focused on the exploration of the algorithm as well as on the promotion 
of its practical usage. All working recovery schemes proposed are incorporated and could be explored 
separately or jointly.  

Due to the features of the socket mechanism of communications and the setup configuration 
provided there are two possible modes of test bed execution: LDM (Local Distributed Mode) or RDM 
(Real Distributed Mode). The LDM is used during development, while RDM – after deployment. 
Mapping from LDM to RDM is isomorphic [7].  

The discussions of the last recovery scheme (Scheme 3) as well as the experimental results 
obtained and timing analysis are subject of subsequent publications because of the space restrictions 
given. 
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