
Reports Awarded with "Best Paper" Crystal Prize ‘22

30 Copyrights© 2022 ISBN 978-954-712-888-0 (Print)

FRI-2G.303-1-CCT1-01

THE HOBBY TIME TRAINING APPROACH

Assoc. Prof. Milen Loukantchevsky, PhD, IEEE & ACM Member

Department of Computer Systems & Technologies,

University of Ruse “Angel Kanchev”

phone: 0877 303 850

Е-mail: mil@ieee.org

Abstract: Constructivism asserted that learning arises from building mental models based on experience.

The concept of Developer’s point of view (DPV) learning approach is considered as “perceive the very solution to

the problem as a game”, thus, making transition to a next level of gamification.

The paper introduces the Hobby Time Training (HTT) concept as part of the DPV learning approach. The

HTT assumes solving of small, apparently simple problems, which encapsulates deeply hidden potential. The solving

takes place during the students' free time and assumes unobtrusive guidance with as little as possible obligatory

moments.

Bitwise operations contain the sought-after hidden creative potential, mainly due to the limited support both

at the high and low levels. Besides that, bitwise algorithms suppose usage of some special techniques as word-level

parallelism, unrolling loops and branch elimination. As an illustration of the hidden deep inner content of the bitwise

problems, the attention is focused on the computing parity bit problem. Several sample solutions are discussed: from

the Naïve Algorithm, through the Word-Level Parallelism Algorithms to the Hardware Supported Algorithm.

Keywords: Bitwise, Constructivism, Gamification, Hobby Time, x86/x64, Word-Level Parallelism

ASJC Codes: 1701, 1708, 1712

INTRODUCTION

According to Confucius (551–479 B.C.) "What I hear, I forget; What I see, I remember;

What I do, I understand.". I guess we have the right to paraphrase this thought in "Do to

understand.". That leads us to the constructive model of training, whose roots are in the

constructivist philosophy. Constructivism asserted that learning arises from building mental

models based on experience (Hadjerrouit, S., 2005).

In (Loukantchevsky, M., 2021) is introduced the concept of Developer’s point of view

(DPV) learning approach. It is described as “perceive the very solution to the problem as a game”,

that is the decision-making process itself becomes a game. Moreover, is assumed the usage of

conventional development environments. Thus, making transition to a next level of gamification

in comparison to the more primitive perception of gamification as “make the hard stuff fun”.

We consider the Hobby Time Training (HTT) concept as part of the DPV learning approach.

The HTT assumes:

• Solving of small, apparently simple problems, which encapsulates deeply hidden

potential that could be find out only during the problem solving.

• The problem decision is made in the student's free time, at his discretion.

• The set deadlines for solving are long enough (at least a week, but normally 2-3-4

weeks).

• Unobtrusive guidance by the tutor mainly through a closed social network group

(Loukantchevsky, M., 2022.).

• The formulation of the problem will of course contain some strict restrictions, but not

other obligatory moments.

• Appropriate incentive system.

The choice of problems set for solving depends mainly on the studied subject. In the area

of computer architectures, when viewed as an interface between the high-level languages (HLL)

and the raw machine, the bitwise algorithms are a good choice. Bitwise operations contain the

sought-after hidden creative potential, mainly due to the limited support both at the high and low

61st Annual Scientific Conference - University of Ruse and Union of Scientists, Bulgaria, 2022

Copyrights© 2022 ISBN 978-954-712-888-0 (Print) 31

levels. Besides that, bitwise algorithms suppose usage of special techniques as word-level

parallelism, unrolling loops and branch elimination (Intel Architectures Optimization Reference

Manual, 2022).

The scope of bitwise algorithms is very broad [(Anderson, S., 2022), (Knuth, D., 2009),

(Warren, H., 2013)]. Let’s note some of them:

• Bitwise vs Boolean.

• Bit scan.

• Bit order reversal.

• Compute the minimum and/or maximum without branching.

• Population count.

• Check if an integer is a power of 2.

• Computing parity bit.

• Reverse bit sequence, etc.

As an illustration of the hidden deep inner content of the bitwise problems, we are going

to focus on the computing parity bit problem. The code presented is Windows 32-bit platform

oriented, produced by the Embarcadero C++ Builder® 11.2 development environment and its

classic BCC32 compiler (Embarcadero, 2022). This choice is optional and therefore not a

limitation. In our case, it stems from the practice of the author as corporate developer and from

the possibility of transition from HLL to Assembly and vice versa.

EXPOSITION

1. Problem Definition and Naive Solution

The problem is to find a parity bit of an operand of size byte, word (16-bits) or doubleword

(32-bits). Let us assume, for simplicity, that the operand 𝑋 is of size byte, i.e. 𝑛 = 8 (Eq. 1).

𝑋 = 𝑥7𝑥6𝑥5𝑥4𝑥3𝑥2𝑥1𝑥0 (1)

The parity bit 𝑃 must complement to an even number the number of ones contained in the

operand. Thus, for the size 𝑛 = 8 of the operand 𝑋 given, we obtain the next Eq. 2

𝑃 = 𝑥7⨁𝑥6⨁𝑥5⨁𝑥4⨁𝑥3⨁𝑥2⨁𝑥1⨁𝑥0 (2)

The solution should be capsulated in a function with prototype

𝐵𝑂𝑂𝐿 __𝑔𝑒𝑡_𝑝𝑎𝑟𝑖𝑡𝑦(𝐵𝑌𝑇𝐸 𝑥). The same for 16- and 32-bits cases but replacing the type 𝐵𝑌𝑇𝐸

with 𝑊𝑂𝑅𝐷 and 𝐷𝑊𝑂𝑅𝐷, respectively.

Fig. 1. Naive Algorithm (x86 Assembly Version, 8-bits)

Reports Awarded with "Best Paper" Crystal Prize ‘22

32 Copyrights© 2022 ISBN 978-954-712-888-0 (Print)

Seemingly obvious (do we really have any other way?) is to 𝑋𝑂𝑅 successively 𝑛 times

following Eq. 2. Eventually we will get the Assembly solution, shown at Fig. 1. The extension

from byte to word and double word is as simple as changing the number of cycles at row 37.

As simple as this solution may seem, it raises several questions:

• Why the returned variable 𝑟𝑒𝑠𝑢𝑙𝑡 is ignored?

• Well, if we use 8-bits registers, why we should return the result by a 32-bits register?

The answer of the first question is in the way classic BCC32 compiler returns values - by

default is used register EAX. And the attentive student will notice this peculiarity on examining

the identical C version. The answer of the second question is in the real length of the Boolean

operand – it is 32-bits (!) with the high 31 bits reset.

The drawbacks:

• The estimated performance is 𝑂(𝑛).

• Short base block, containing only three instructions (at rows 41, 42 and 44) is blocking

the instruction reordering mechanism (Out-Of-Order Execution, OOO in Intel’s

notation) [(Intel Architectures Optimization Reference Manual, 2022), (Intel

Architectures Software Developer’s Manual, 2022)].

• Control stalls will appear because of the branch instruction.

And while the first drawback is obvious, the other two require knowledge of the modern

pipelined superscalar computer architectures vs traditional scalar ones.

2. Word-Level Parallelism at High Level (Shift-Lookup Algorithm/WLP-1)

As already noted above, bitwise operations contain hidden creative potential. One

manifestation of it is the Word-Level Parallelism [(Anderson, S., 2022), (Warren, H., 2013)].

Word-level Parallelism is a special case of data-level parallelism on scalar units – bytes (in

our case), words, double words. With one bitwise XOR instruction we could XOR-ed not one but

8, 16, 32 Booleans at once!

We should decompose our operand 𝑋 from Eq. 1 to two 4-bits operands 𝑥3𝑥2𝑥1𝑥0 and

𝑥7𝑥6𝑥5𝑥4 using a shift right, then XOR them in parallel (Eq. 3).

(𝑐3 = 𝑥7⨁𝑥3)||(𝑐2 = 𝑥6⨁𝑥2)||(𝑐1 = 𝑥5⨁𝑥1)||(𝑐0 = 𝑥4⨁𝑥0) (3)

As result we get a 4-bits code 𝑐3𝑐2𝑐1𝑐0. We consider this code as a lookup-code in the

parity table from Fig. 2. The parity table in its classical representation is a vector by size 16. Each

element of the vector contains Boolean 0 or 1 according to the appropriate value of the parity bit.

Fig. 2. Parity Table

Instead of placing such a table into the memory we compress it into 16-bits word

0110 1001 1001 0110 in binary or 6996 in hexadecimal. And replace the lookup operation

with right shift of the above word-sized table by 𝑐3𝑐2𝑐1𝑐0 bits. This algorithm could be

implemented at HLL as C in our case or in Assembly. Here we prefer the HLL but translate it to

Assembly to analyze the end code and eventually to compare with Assembly language edition as

at Fig. 3.

61st Annual Scientific Conference - University of Ruse and Union of Scientists, Bulgaria, 2022

Copyrights© 2022 ISBN 978-954-712-888-0 (Print) 33

Fig. 3. Translated Version of the Shift-Lookup Algorithm (8-bits)

Really beautiful variant free from all the drawbacks of the naïve solution. Impressive to

see that what is considered obvious eventually turns out to be the most inappropriate.

The extension from byte to word and double word requires additional pairs of SHR and

XOR operations: one additional such a pair for word and yet another for double word.

3. Word-Level Parallelism at Low Level (Throughout-Shift Algorithm/WLP-2)

The Throughout-Shift Algorithm is very close to the above discussed Shift-Lookup

Algorithm. There are two differences: the way of grouping is changed; the lookup table is

omitted.

For 8-bits case we will need three pairs of SHR and XOR instructions following the Eq. 4,

Eq. 5 and finally Eq. 6.

(𝑥6
′ = 𝑥7⨁𝑥6)||(𝑥4

′ = 𝑥5⨁𝑥4)||(𝑥2
′ = 𝑥3⨁𝑥2)||(𝑥0

′ = 𝑥1⨁𝑥0), (4)

(𝑥4
′′ = 𝑥6

′ ⨁𝑥4
′)||(𝑥0

′′ = 𝑥2
′ ⨁𝑥0

′), (5)

(𝑃 = 𝑥0
′′′ = 𝑥4

′′⨁𝑥0
′′). (6)

At Fig. 4 is shown the 8-bits version in x86 Assembly. The groups of highest bits are formed

in register DX, and the groups of lowest bits are formed in register AX.

Could be calculated that the number of these pairs will be 𝑙𝑜𝑔2𝑛. Hence, the estimated

performance of this algorithm is 𝑂(𝑙𝑜𝑔2𝑛). It is quite better than the Naïve Algorithm. On another

hand, the Throughout-Shift Algorithm is quite a bit less effective than the Shift-Lookup Algorithm,

because of one additional SHR/XOR pair needed.

4. The Importance of Hardware Support

After everything done up to now, one cannot help but say to oneself: "Eureka! Well, the

machine forms the parity flag automatically!". Yes, but…

At first, we should know how to set/reset the parity flag PF. Second, we should know how

to access them, and of course no way how with HLL.

At Fig. 5 is shown 8-bits version of the Hardware Supported Algorithm in x86 Assembly.

It is straight enough, but even in these three-four instructions there are its own peculiarities [(Intel

Architectures Software Developer’s Manual, 2022), (Microsoft technical documentation, 2022)]:

• The PF reflects the parity only of the least significant byte of the result, hereof the operand

is placed in register AL.

Reports Awarded with "Best Paper" Crystal Prize ‘22

34 Copyrights© 2022 ISBN 978-954-712-888-0 (Print)

• The PF is accessed with different instruction in 16/32 and in 64-bit modes.

• The PF is placed not in position 0 of the status register, but in position 2.

Fig. 4. Throughout-Shift Algorithm (x86 Assembly Version, 8-bits)

Fig. 5. Hardware Supported Algorithm (x86 Assembly Version, 8-bits)

The extension from byte to word and double word requires processing of every byte due to

the mentioned peculiarity of the PF - reflecting the parity only of the least significant byte of the

result. At Fig. 6 is shown 16-bits version of the Hardware Supported Algorithm in x86 Assembly.

This simple example is a good illustration of the importance of the available hardware support.

At Fig. 7 is shown complexity estimation for byte, word, and double word variants of the

four algorithms discussed. The Naïve Algorithm is worst in all cases. The Hardware Supported

Algorithm is best for byte and word processing. And the Shift-Lookup Algorithm is best for double

61st Annual Scientific Conference - University of Ruse and Union of Scientists, Bulgaria, 2022

Copyrights© 2022 ISBN 978-954-712-888-0 (Print) 35

word processing. The Throughout-Shift Algorithm is close to them. Except the Naïve Algorithm

the others do not restrict instruction reordering (OOO) and are branch free, i.e. control stalls free.

Fig. 6. Hardware Supported Algorithm (x86 Assembly Version,16-bits)

Fig. 7. Complexity estimation

Finally, we observe the following phenomenon: usually, what is considered obvious

eventually turns out to be the most inappropriate.

CONCLUSION

The professional software developer perceives the very solution of the problem as a game.

To reach this highest level of gamification is proposed the concept of the Hobby Time Training

(HTT) concept. The HTT is part of the DPV learning approach and assumes solving of small,

apparently simple problems, which encapsulates deeply hidden potential. Solving takes place

during the students' free time and assumes unobtrusive guidance from the tutor with as little as

possible obligatory moments.

In the area of computer architectures, viewed as an interface between the high-level

languages (HLL) and the raw machine, the bitwise algorithms are a good choice. Bitwise

Reports Awarded with "Best Paper" Crystal Prize ‘22

36 Copyrights© 2022 ISBN 978-954-712-888-0 (Print)

operations contain the sought-after hidden creative potential, mainly due to the limited support

both at the high and low levels. Besides that, bitwise algorithms suppose usage of special

techniques.

For illustration, from the long list of algorithms requiring bitwise operation is selected the

parity bit calculation problem. This is a very good example because of its apparent simplicity. In

practice it turns out that the task is not so simple at all.

From one side, you cannot be innovative in the big if you never even tried to be innovative

in the small. And from another, we encounter the phenomenon of what is considered as obvious

as a solution eventually turns out to be the most inappropriate one.

REFERENCES

Anderson, S. (2022) Bit Twiddling Hacks. Retrieved September 17, 2022 from

http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel

Embarcadero. (2022). RAD Studio Docwiki: C++ Compilers. Retrieved September 23,

2022 from https://docwiki.embarcadero.com/RADStudio/Alexandria/en/C%2B%2B_Compilers

Intel. (2022). Intel® 64 and IA-32 Architectures Optimization Reference Manual. Order

Number: 248966-045

Intel. (2022). Intel® 64 and IA-32 Architectures Software Developer’s Manual. Order

Number: 325462-077US

Hadjerrouit, S. (2005). Constructivism as Guiding Philosophy for Software Engineering

Education. ACM SIGCSE Bulletin, Vol. 37, Num. 4. DOI: https://

doi.org/10.1145/1113847.1113875

Knuth, D. (2009). The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise

Tricks & Techniques; Binary Decision Diagrams. 1st Ed. AddisonWesley Professional. ISBN

978-0321580504

Loukantchevsky, M. (2022). Hobby Time: Bit Order Reversal. Retrieved September 21,

2022 from https://t.me/c/1569632971/106

Loukantchevsky, M. (2021). Solving Classical Problem in New Context as Constructive

Model of Training: Active Memory Array of Concurrent Processes Concept. IN: CompSysTech

'21, New York, NY, USA, ACM, pp. 191-195, https://doi.org/10.1145/3472410.3472430

Microsoft technical documentation. (2022) x86 Instructions. Retrieved September 17, 2022

from https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-instructions

Warren, H. (2013). Hacker's Delight. 2nd Ed. Addison-Wesley Professional. ISBN 978-

0321842688

http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/C%2B%2B_Compilers
https://t.me/c/1569632971/106
https://doi.org/10.1145/3472410.3472430
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-instructions

