
**WHAT WILL THESE BONES TELL?
STUDY OF SELECTED RURIK BURIALS
USING THE NAA METHOD**

Assoc. Prof. Tatiana Strokovskaya, PhD

N. V. Glombockaya, A. U. Dmitriev, O. S. Filipova
FLNP JINR, Dubna, Russia
E-mail: t.e.strokovskaya@gmail.com

Assoc. Prof. S. G. Lennik, PhD

Institute of Nuclear Physics, Almaty, Kazakhstan

Abstract: The purpose of the work is to study the elemental composition of the bone remains of members of the grand ducal family using the NAA method. The study, based on a comprehensive interdisciplinary analysis of the entire corpus of sources, replenishes information about the elemental composition of the remains of the Russian medieval elite and opens up new opportunities for clarifying and sometimes revising established ideas about lifestyle and dietary features, allows us to restore details of everyday life, information about the materials of costumes and cutlery, as well as court rituals.

Keywords: study the elemental composition of the bone remains

JEL Codes: L29

REFERENCES

- K. L. Rasmussen, G. Milner, L. Skytte, N. Lynnerup, J. L. Thomsen, and J. L. Boldsen, “Mapping diagenesis in archaeological human bones,” *Herit Sci*, 2019, doi: 10.1186/s40494-019-0285-7.
- K. L. Rasmussen, L. Skytte, A. J. Jensen, and J. L. Boldsen, “Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages,” *J. Archaeol. Sci. Reports*, vol. 3, pp. 358–370, 2015, doi: 10.1016/j.jasrep.2015.06.021.
- S. S. Pavlov, A. Y. Dmitriev, I. A. Chepurchenko, and M. V. Frontasyeva, “Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research,” *Phys. Part. Nucl. Lett.*, vol. 11, no. 6, pp. 737–742, 2014, doi: 10.1134/S1547477114060107.
- S. S. Pavlov, A. Y. Dmitriev, and M. V. Frontasyeva, “Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,” *J. Radioanal. Nucl. Chem.*, vol. 309, no. 1, pp. 27–38, 2016, doi: 10.1007/s10967-016-4864-8.
- S. Zaichick and V. Zaichick, “The scalp hair as a monitor for trace elements in biomonitoring of atmospheric pollution,” *Int. J. Environ. Heal.*, vol. 5, no. 1/2, p. 106, 2011, doi: 10.1504/IJENVH.2011.039860.
- J. Kučera et al., “Was He Murdered or Was He Not? Part II: Multi-Elemental Analyses of Hair and Bone Samples from Tycho Brahe and Histopathology of His Bones,” *Archaeometry*, vol. 59, no. 5, pp. 918–933, 2017, doi: 10.1111/arcm.12284.
- G. V. Iyengar and L. Tandon, *Minor and trace elements in human bones and teeth*. Vienna: International atomic energy agency, 1999.
- I. V. Shugalei, A. V. Garabadzhiu, M. A. Ilyushin, and A. M. Sudarikov, “Some aspects of the effect of aluminum and its compounds on living organisms,” *Russ. J. Gen. Chem.*, vol. 83, no. 13, pp. 2633–2646, 2013, doi: 10.1134/S1070363213130082.
- N. K. Aras, G. Yilmaz, S. Alkan, and F. Korkusuz, “Trace elements in human bone determined by neutron activation analysis,” in *Journal of Radioanalytical and Nuclear Chemistry*, 1999, vol. 239, no. 1, pp. 79–86. doi: 10.1007/BF02349535.