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Abstract: Autowave processes /self-oscillations/ are phenomena in the fields of engineering, biology, chemistry, 

physics, physiology, economics and sociology. The article examines an important class of catalytic reactions - catalysis. 

A brussellator model is described and the differential equations are presented with program code and numerical 

examples in the PTC Mathcad programming environment. 
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ВЪВЕДЕНИЕ 

Проявите на самоорганизация като автотрептения, стационарни дисипативни структури 

и вълни се наблюдават в нелинейни открити системи със сложно динамично поведение. 

Автотрептенията са присъщи на системи с различно физично съдържание, 

включително биологични и химични структури. В биологичните системи трептенията са 

свързани с числеността на популациите от два или повече видове, т.н. „хищник-жертва“. В 

химичните системи – с изменение на концентрацията на веществата, участващи в реакцията. 

Автотрептения или множество осцилиращи състояния на сложни неравновесни 

системи се описват със система от диференциални уравнения. През 1968 г. Иля Пригожин и 

неговите сътрудници разработват модел на типови поведения на системи, съвместими с 

фундаментални закони от химичната и биологичната кинетика. Така описват важен клас от 

каталитични реакции с автотрептения – катализа. Системата от диференциални уравнения на 

математическия модел е наречена брюселатор на името на града, в който екипа работи.  

 

ИЗЛОЖЕНИЕ 

Постановка на модела на брюселатор 

Явлението катализа е с участие на вещества катализатори, променящи скоростта на 

химичния процес чрез промяна на активиращата енергия и оставащи непроменени в края на 

реакцията. 

Хипотетичната химична реакция на тримулекулярен модел, протичаща в тънък и дълъг 

едномерен съд без отчитане на дифузията, е показана на Фиг.1 - от вещество А се образува 

вещество Х, което се превръща в продукт Е без да реагира с нито един от реагентите и 

изходните вещества от реакцията. Реагент У, получен от Х, едновременно участва в 

създаването на Х. Изходните концентрации на А и В са постоянни във времето, както и 

концентрациите на продуктите D и E (Pomerantsev, Yu., Sviridov V., 2017). Съответните 

реакции са показани с константите на скоростите за всяка реакция на Фиг.1. 

 
87 Докладът е представен на заседание на секция „Технически науки“ на 62-та международна научна 

конференция „Нови индустрии, дигитална икономика, общество – проекции на бъдещето – VI“, проведена във 

Филиал – Силистра на Русенски университет „А. Кънчев“, на 27 октомври 2023 с оригинално заглавие на 

български език: СОФТУЕРНО МОДЕЛИРАНЕ НА КАТАЛИЗЕН АВТОВЪЛНОВ ПРОЦЕС 
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Фиг. 1. Схема и реакции на катализа. 

 

Стадият с константа 𝑘3 е автокаталитичен.  

Кинетиката на системата се определя от промяната на концентрациите на реагентите X 

и Y. Реакциите се описват с кинетични уравнения като система от две нелинейни 

диференциални уравнения: 

 

 𝑑𝑥(𝑡)

𝑑𝑡
= 𝑘1. 𝐴 − 𝑘2. 𝐵. 𝑋(𝑡) + 𝑘3. 𝑋(𝑡)2. 𝑌(𝑡) − 𝑘4. 𝑋(𝑡)

= 𝑘1𝑒𝑓 − 𝑘2𝑒𝑓. 𝑋(𝑡) + 𝑘3. 𝑋(𝑡)2. 𝑌(𝑡) − 𝑘4. 𝑋(𝑡) ; (1) 
             

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑘2. 𝐵. 𝑋(𝑡) − 𝑘3. 𝑋(𝑡)2. 𝑌(𝑡) = 𝑘2𝑒𝑓. 𝑋(𝑡) − 𝑘3. 𝑋(𝑡)2. 𝑌(𝑡) . 

 

След замяна на управляващите параметри в (1) с: 𝜏 = 𝑘4. 𝑡; 𝑥 = √𝑘3 𝑘4⁄  . 𝑋 ;  

𝑦 = √𝑘3 𝑘4⁄  . 𝑌,   както и 𝑘1𝑒𝑓 = 𝑘1. 𝐴,   𝑘2𝑒𝑓 = 𝑘2. 𝐵 ,  системата на брюселатора е във 

вида: 

 

 𝑑𝑥(𝜏)

𝑑𝜏
= 𝑎 − (𝑏 + 1). 𝑥(𝜏) + 𝑥(𝜏)2. 𝑦(𝜏) ; 

(2) 
             

𝑑𝑦(𝜏)

𝑑𝜏
= 𝑏. 𝑥(𝜏) −  𝑥(𝜏)2. 𝑦(𝜏) , 

 

където:  

 

𝑎 =
𝑘1𝑒𝑓

𝑘4
√𝑘3 𝑘4⁄ , 𝑏 =

𝑘2𝑒𝑓

𝑘4
. 

 

Особеност на брюселатора е многообразието на състоянията спрямо управляващите 

параметри 𝑎 и 𝑏 и независимост от началните условия.  

При непроменящи се концентрации на реагентите X и Y с течение на времето се 

получава стационарно състояние - 𝑥0 = 𝑎, 𝑦0 =
𝑏

𝑎
   (Pomerantsev, Yu.,  Sviridov V., 2017). 

В област, близка до стационарното състояние, при |𝜉| ≪ 𝑎, |𝜂| ≪ 𝑏/𝑎, системата от 

линейни диференциални уравнения придобива вида: 

 

 𝑑𝜉

𝑑𝜏
= (𝑏 − 1). 𝜉 + 𝑎2. 𝜂 ; 

 
𝑑𝜂

𝑑𝜏
= −𝑏. 𝜉 −  𝑎2. 𝜂 , 

(3) 

с частно решение: 𝜉, 𝜂~е𝑝.𝑡. 
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Характеристичният показател 𝑝 се изразява с квадратното уравнение: 

 
 𝑝2 + (𝑎2 − 𝑏 + 1). 𝑝 + 𝑎2 = 0, 

(4) 
 
при дискриминанта: 

 

 𝐷 = (𝑎2 + 𝑏 + 1)2 − 4. 𝑎2 = [(𝑎 − 1)2 − 𝑏]. [(𝑎 + 1)2 − 𝑏] 
(5) 

 

и решение 

 

𝑝1,2 =
𝑏 − (𝑎 + 1)2 ± √𝐷

2
. 

 

Частното решение 𝜉, 𝜂~е𝑝.𝑡 се определя от знака на 𝑏 − (𝑎 + 1)2 и знака на 𝐷. 
Кривите 𝑏 = (𝑎 + 1)2, 𝑏 = (𝑎 − 1)2, 𝑏 = (𝑎 + 1)2 разделят на четири подобласти цялата 

област от стойности на параметрите 𝑎 и 𝑏 (Фиг. 2). 

 

 
Фиг. 2. Диаграма на състоянията на брюселатор. 

 

Подобласт 𝐼 (𝐷 > 0, 𝑝1,2 < 0) е със стационарно устойчиво състояние без трептения. 

Дискриминантата е положителна, характеристичните показатели са реални и отрицателни. 

Частното решение описва системата с бързо монотонно приближаване към стационарното й 

състояние чрез атрактор от типа устойчив възел. 

Подобласт 𝐼𝐼 (𝐷 < 0, 𝑅𝑒 𝑝 < 0) е със затихващи трептения около стационарното 

състояние. Дискриминантата е отрицателна. Единият характеристичен показател е 

имагинерен и описва трептене със собствена честота. Другият характеристичен показател е 

отрицателен и трептенията бързо затихват с течение на времето. Стационарното състояние е 

устойчиво с атрактор от типа устойчив фокус. 

Подобласт 𝐼𝐼𝐼 (𝐷 < 0, 𝑅𝑒 𝑝 > 0) е със самовъзбудими трептения. Дискриминантата е 

отрицателна. Единият характеристичен показател е имагинерен и описва трептенията на 

концентрациите на реагентите X и Y. Другият характеристичен показател е положителен и 

амплитудата на трептенията нараства с течение на времето. Системата е с атрактор от типа 

устойчив пределен цикъл. 

Подобласт 𝐼𝑉 (𝐷 > 0, 𝑝1,2  > 0) е със стационарно неустойчиво състояние без 

трептения. Дискриминантата е положителна, характеристичните показатели са реални и 

положителни, което съответства на силно неустойчиво състояние с неустойчив възел. 
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Системата няма пределен цикъл и във времето се прехвърля на границата на достъпното й 

фазовото пространство. 

 

Моделиране на брюселатор в програмна среда 

Математическият модел на брюселатор по диференциалните уравнения (2) е 

реализиран в програмна среда на PTC Mathcad с използване на вградената функция rkadapt.  

Синтаксисът на Rkadapt е  начални условия 𝑦, период на пресмятане 0, 𝑡𝑚𝑎𝑥, брой 

точки, в които се търси решение 𝑁, зададена функция 𝐷. За пресмятането й се прилага 

методът на Рунге-Кута от четвърти ред с адаптивна стъпка.  

Диференциалните уравнения на модела са приведени по изискване на програмата във 

функция 𝐷(𝑡, 𝑦) с полагане на 𝑥(𝜏) и 𝑦(𝜏) от (2) съответно на 𝑦0 и 𝑦1. 

Резултатите от решенията на диференциалните уравнения за 𝑁 на брой точки са 

формирани в матрица 𝑠.  
Кодът на програмата и осцилациите са показани съответно на Фиг.3 и Фиг.4. 

 

 
Фиг. 3. Код на математическия модел на брюселатор в програмна среда на PTC Mathcad 

за парамери 𝑎 = 1, 𝑏 = 3. 
 

Качествената промяна в системата произтича в характерни точки на - устойчив възел 

при 𝑏 < (𝑎 − 1)2; устойчив фокус при 𝑏 < 𝑎2 + 1; център при 𝑏 = 𝑎2 + 1; неустойчив фокус 

при 𝑏 > 𝑎2 + 1; неустойчив възел при 𝑏 > (𝑎 + 1)2. 

Неустойчивият фокус на системата е с проява на пределен цикъл. Границата на 

областта на устойчивост 𝑏 = 𝑎2 + 1 съответства на бифуркацията на Андронов-Хопф, при 

която устойчивото стационарно състояние от типа фокус губи устойчивост, а около него се 

поражда устойчив пределен цикъл. 

Независимо от началните условия на системата, движението на всяка точка по фазова 

плоскост е по една и съща затворена фазова траектория и след време се установяват 

асимптотни устойчиви концентрационни трептения с еднаква амплитуда и честота. 

Системата на брюселатора е с атрактор, привличащ всички фазови траектории на точките. 

 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 11.1 

 - 127 - 

 
Фиг. 4. Осцилации на основните химични компоненти на реакцията на брюселатор с 

числените решения в програмна среда на PTC Mathcad   

за параметри  𝑎 = 1, 𝑏 = 3 [𝑋, 𝑌]; 𝑎 = 1, 𝑏 = 4 [𝑋1, 𝑌1]; 𝑎 = 1, 𝑏 = 1,8 [𝑋2, 𝑌2]. 
 

Фазопараметрични диаграми /фазови портрети/ на брюселатора от числените решения, 

са показани на Фиг.5.  

 

 
Фиг. 5. Фазови портрети по оси X, Y ;  Z, Y ;  Z, X от числените решения в програмна 

среда на PTC Mathcad 

за параметри 𝑎 = 1, 𝑏 = 3 [𝑋, 𝑌]; 𝑎 = 1, 𝑏 = 4 [𝑋1, 𝑌1]; 𝑎 = 1, 𝑏 = 1,8 [𝑋2, 𝑌2]. 
 

Фазовите портрети на системата показват, че при периодични процеси на трептене 

съответства устойчив пределен цикъл, а при затихващи процеси – устойчив фокус. 

Неустойчивият фокус е условие за самовъзбуждане на автотрептения. Качествената промяна 

във фазовия портрет се установява от точката на бифуркация. 
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ЗАКЛЮЧЕНИЕ  

Химичните осцилации на брюселатор са пример от неравновесната химична динамика. 

Математическият модел на брюселатор, реализиран в програмна среда на PTC Mathcad, 

осъществява числено симулиране, визуализация на решенията с промяна на системата при 

задаване на различни параметри. 

Чрез математическото програмиране в програмна среда на автотрептене при катализа 

се реализира интерактивно представяне на сложната динамична система и възможност за 

цялостен анализ. 
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