
PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 15 - 

FRI-2G.303-1-CCT1-03 

 

INTEGER COMPUTATION PUZZLES  

AS PART OF THE HOBBY TIME TRAINING APPROACH3 

 

Assoc. Prof. Milen Loukantchevsky, PhD, IEEE & ACM Member 

Department of Computer Systems & Technologies,  

University of Ruse “Angel Kanchev”   

Phone: 0877 303 850 

e-mail: mil@ieee.org 

 
Abstract: The concept of Developer’s point of view (DPV) learning approach is based on the idea of “perception 

the very solution to the problem as a game” and takes the gamification of learning to the next level. 

The Hobby Time Training (HTT) concept is part of the DPV learning approach. It assumes solving small, 

apparently simple problems, which encapsulates deeply hidden potential. The problem solving itself takes place during 

the students' free time and assumes unobtrusive guidance with as little as possible obligatory moments. 

In previous papers the HTT is presented by distinctive bitwise operations. They contain the sought-after hidden 

creative potential, mainly due to the limited support both at the high and low levels. Here the HTT is developed by 

another kind of apparently “simple” problems of the area of integer computation. Somewhat unexpectedly for the 

unprepared one it turns out that these problems have a deeply hidden inner content. Like bitwise operations, integer 

computation algorithms suppose usage of some special techniques such word-level parallelism, unrolling loops, and 

branch elimination. 

The attention is focused here on some elements of Hamming sequence generation: factorization by 2, 3 and 5, 

divisibility check by 3 and 5, fast integer division and multiplication by 3 and 5. 

Keywords: Constructivism, Factorization, Gamification, Hamming Numbers, Hobby Time, Number Sequences 

Games, Regular Numbers, x86/x64 

ASJC Codes: 1701, 1708, 1712 

 
INTRODUCTION 

The concept of Developer’s point of view (DPV) learning approach is described as “perceive 

the very solution to the problem as a game”. That is, the decision-making process itself becomes a 

game. Moreover, it assumes the usage of conventional development environments. Thus, we go up 

to the next level of gamification in comparison to the more primitive perception of gamification as 

“make the hard stuff fun”. 

The Hobby Time Training (HTT) concept is a part of the DPV learning approach 

((Loukantchevsky, M., 2022, Loukantchevsky, M. (2023)). As such, the HTT assumes solving of 

small, apparently simple problems, which encapsulates deeply hidden potential that could be found 

out only during the problem solving (Anderson, S., 2023). 

In previous papers the HTT is presented by distinctive bitwise operations ((Loukantchevsky, 

M., 2022, Loukantchevsky, M. (2023)). They contain the sought-after hidden creative potential, 

mainly due to the limited support both at the high and low levels. Here the HTT is developed by 

another kind of apparently “simple” problems of the area of integer computation. Somewhat 

unexpectedly for the unprepared one it turns out that these problems have a deeply hidden inner 

content. Like bitwise operations, integer computation algorithms suppose usage of some special 

techniques such word-level parallelism, unrolling loops, and branch elimination. Especially useful 

when the field of study is modern superscalar computer architectures. 

The attention is focused here on some elements of Hamming Numbers Sequence (HNS) 

generation: factorization by 2, 3 and 5, divisibility check by 3 and 5, fast integer division and 

multiplication by 3 and 5.  

 
3 The paper have been presented on 27.10.2023 in session Communication and Computer Technologies with 

original tittle: INTEGER COMPUTATION PUZZLES AS PART OF THE HOBBY TIME TRAINING APPROACH 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 16 - 

The code presented is Windows 32-bit platform oriented, produced by the Embarcadero C++ 

Builder® 11.3 development environment and its classic BCC32 compiler (Embarcadero, 2023). 

This choice is optional and therefore not a limitation. In our case, it stems from the practice of the 

author as corporate developer and from the opportunity to use inline Assembly technology. 

 

EXPOSITION 

1. Problem Definition 

So called regular, 5-smooth, or Hamming number (HN) is product of three primes 2, 3 and 5 

(Eq. 1). 

 

𝐻𝑁 = 2𝑖 × 3𝑗 × 5𝑘, 𝑖 ≥ 0, 𝑗 ≥ 0, 𝑘 ≥ 0           (1) 

Respectively, the ascending sequence of HN is called Hamming numbers sequence (HNS) or 

simply Hamming sequence. Richard Hamming is the first asked for an efficient algorithm to 

generate the list, in ascending order, of all numbers of this kind. The problem was popularized by 

Edsger Dijkstra. 

 

 
Fig. 1. HNS-14 

 

The problem is trivial only in its classical form: to generate HNS in ascending order by 

successively traversing and checking a given subset of the natural numbers. From Fig. 1 could be 

seen that powers of 2, 3, and 5 do not increase monotonically. Consequently, the problem becomes 

significantly more complicated if a full traversal is to be avoided. 

 

 
Fig. 2. Function f_235() 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 17 - 

 

Following the principles of the HTT we are interested (at least initially) in the individual 

independent subproblems into which the problem could be broken down. At the top level of the 

solution (Fig. 2) is placed the function f_235(). It attempts factorization of <src> as in Eq. 1. 

The functions f_2(), f_3() and f_5() for factorizing to 2, 3 and 5, respectively, are placed a 

level down. While f_2() is solved elementary, f_3() and f_5() implies several alternative solutions: 

• By the modulo division operation. 

• By GCD. 

• By alternative method of divisibility verification. 

The goal is to investigate different alternatives of implementation of f_3() and f_5(). 

Let consider here in little more detail some key moments of factorization by 3, divisibility 

check by 3 and modulus of 3. 

 

2. Factorizing by 3 

The function f_3() for factorizing to 3 has three main alternatives separated by the relevant 

conditional preprocessor directive (Fig. 3). 

 

 
Fig. 3. Function f_3() 

 

The divisibility check by 3 function div_chk_3(), modulus of 3 function mod_3() and the 

standard library function std::gcd() are placed a level down. 

 

3. Divisibility Check by 3 

The main idea here is to choose a method that does not require division. And if possible, to 

apply branch elimination technique, in view of the specifics of modern superscalar architectures. 

Three main points can be distinguished: 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 18 - 

1) Let the number checked is represented in numbering system with radix 𝑝. The rule of 

divisibility of the number (𝑝 + 1) requires that the difference |𝜎𝑒 − 𝜎𝑜| between the sum 

𝜎𝑒 of all even digits and the sum 𝜎𝑜 of all odd digits is divisible by (𝑝 + 1). 

2) The sums are calculated by POPCNT x86/x64 machine instruction (Microsoft, 2023), i.e. 

using appropriate hardware support. 

3) After calculating the sum of even bits and the sum odd bits is checked if their difference 
|𝜎𝑒 − 𝜎𝑜| is zero. If it is zero, the divisibility condition is met. Otherwise, is checked if the 

difference is divisible by (𝑝 + 1).  

4) The divisibility check of the difference is tabular. The table used is compressed into a 

DWORD constant (Fig. 4). The so compressed table lookup is performed by right logical 

shift at 𝐶 bits, where the binary code of 𝐶 is 𝐶3𝐶2𝐶1𝐶0. 

 

 
Fig. 4. Compressed table of divisibility by 3 

 

Note that the method is directly applicable to check for divisibility by 3, as internal machine 

representation uses radix 𝑝 = 2 and hence (𝑝 + 1) = 3.  

The same method is also applicable to check divisibility by 5. For that, the binary code of the 

number checked is formed in pairs of two bits representing a binary coded digit with radix 4. 

 

4. Modulus of 3 

The basic solution of the operation, of course, implies the use of the built-in high-level 

operator, e.g. % in C/C++. However, it is of interest to study an alternative avoiding division 

operation. Such is the Deterministic Finite Automata (DFA) method. The State Transition Table of 

the DFA for modulus of 3 is presented in Fig. 5. 𝑆𝑖 is the current state of the DFA, and 𝑆𝑖+1 – its 

next state. The implementation of the DFA of Fig 5 implies scanning from MSB to LSB. 

 

 
Fig. 5. State Transition Table of DFA for modulus of 3 

 

Initial Phase: Additional speedup is obtained if scanning begins from the MSB but from the 

most significant set bit using BSR machine instruction (Microsoft, 2023), as shown in Fig. 6. 

 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 19 - 

 
Fig. 6. Modulus of 3 first phase 

 

Three variants of the main phase are considered. 

Main Phase [Ver. 1]: traditional, through if/else operator (Fig. 7). 

 

 
Fig. 7. Modulus of 3 main phase through if/else operator 

 

Main Phase [Ver. 2/Subversion 1]: through 2D state transition table (Fig. 8). Implements 

branch elimination technique. Hower, it turns out that to access the 2D table tt3 the compiler 

generates machine instruction IMUL for integer multiplication (Microsoft, 2023)! As a result, the 

efficiency of Subversion 1 is reduced. 

 
Fig. 8. Modulus of 3 main phase through 2D state transition table 

 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 20 - 

 
Fig. 9. Fast access to the compressed state transition table 

 

Main Phase [Ver. 2/Subversion 2]: through compressed state transition table (Fig. 9). 

In this case, the access to the 2D state transition table is reduced to one fast multiplication by 

2 (for the first index a) and one fast multiplication by 3 (for the second index b). 

 

 
Fig. 10. Compressed state transition table 

 

The 2D state transition table for Fig. 5 is compressed here to DWORD constant via 

linearization shown in Fig. 10. 

 

 
Fig. 11. Compressed state transition table for modulus of 5 

 

For comparison the appropriate compressed state transition table is presented in Fig. 11. In 

both cases the Little Endian multibyte order of x86/x64 family is taken into account. 

 

CONCLUSION 

Following the HTT and the principle “the simplest first” are given the problems of 

factorization by 2, 3 and 5, divisibility check by 3 and 5, fast integer division and multiplication by 

3 and 5. They are products of division to subtasks of the more general problem of Hamming 

Numbers Sequence (HNS) generation. 

Key moments of the factorization by 3, divisibility check by 3 and modulus of 3 are 

considered in more detail. These operations in respect to 5 are based on the same ideas but are not 

“copy-paste” solvable. Their implementation requires a definite creativity from the students.  

The full code is accessible in the F_235 subfolder of the author’s GitHub repository 

(Loukantchevsky, M. GitHub, 2023). An alternative method for fast division by 3 and 5 is also 

shown there. It consists in replacing the operation of division with multiplication (Warren, H. , 

2012). Would be very useful and instructive for the future specialists to use the code provided for 

evaluation and comparison of the considered alternatives.  

For more advanced students who are successful, one can continue with different variants of 

the accelerated HNS generation problem: without a full traversal of a subset of the natural numbers. 

But this is already another topic and implies separate consideration. 



PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2. 

 - 21 - 

 

REFERENCES 

Anderson, S. Bit Twiddling Hacks. Retrieved September 29, 2023 from 

http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel  

Dijkstra,  E. (1976). A Discipline of Programming. Prentice-Hall, Inc., NJ. ISBN 0-13-

215871-X 

Embarcadero. RAD Studio Docwiki: C++ Compilers. Retrieved September 29, 2023 from 

https://docwiki.embarcadero.com/RADStudio/Alexandria/en/C%2B%2B_Compilers  

Intel. (2023). Intel® 64 and IA-32 Architectures Optimization Reference Manual. Order 

Number: 248966-048 

Intel. (2023). Intel® 64 and IA-32 Architectures Software Developer’s Manual. Order 

Number: 325462-081US 

Loukantchevsky, M. GitHub Repository: Hamming Numbers Generation. Retrieved October 

12, 2023 from https://github.com/milphaser/HN  

Loukantchevsky, M. (2022). The Hobby Time Training Approach. In: Proceedings of the 

University of Ruse - 2022, vol 61, book 3.2, ISSN 2603-4123 

Loukantchevsky, M. (2023). Yet Another Parallelism Within the “Hobby Time Training”. In: 

Yang, XS., Sherratt, R.S., Dey, N., Joshi, A. (eds) Proceedings of Eighth International Congress on 

Information and Communication Technology. ICICT 2023. Lecture Notes in Networks and 

Systems, vol 694. Springer, Singapore. https://doi.org/10.1007/978-981-99-3091-3_19  

Microsoft technical documentation. x86 Instructions. Retrieved September 29, 2023 from 

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-instructions  

Warren, H. (2012). Hacker's Delight. 2nd Ed. Addison-Wesley Professional. ISBN 978-

0321842688 

 

 

 

 

 

 

 

  

http://graphics.stanford.edu/~seander/bithacks.html#ParityParallel
https://docwiki.embarcadero.com/RADStudio/Alexandria/en/C%2B%2B_Compilers
https://github.com/milphaser/HN
https://doi.org/10.1007/978-981-99-3091-3_19
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-instructions

