PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2.

FRI-2G.303-1-CCT1-05

EXPERIMENTAL EVALUATION
OF THE PHP'S CURL LIBRARY PERFORMANCE?

Yordan Kalmukov, PhD

Department of Computer Systems and Technologies,
University of Ruse

E-mail: jkalmukov@uni-ruse.bg

Abstract: cURL (libcurl) is a popular and widely used library distributed with the php interpreter. It allows php
applications to connect to and communicate with external resources (servers) by using wide variety of communication
protocols. In most cases it is the preferred way of consuming external REST web services. Programmers usually use it
for granted without even thinking of any performance issues. During an experimental analysis of the Hadoop'’s
WebHDFS API throughput, it has been noted that read (download) speed from WebHDFS reduces with increasing the
file size. However, this issue does not happen when writing to WebHDFS. Since the communication between the php
application and the WebHDFS API is handled by the php’s cURL library, then the cause of the download speed
decrease could be either the cURL library itself or the API.

This paper presents a series of experimental analyses aiming to determine the cause of the download speed
decrease in previous experiments — whether it is the WebHDFS API or the php’s cURL library. Both parties are tested
in multiple ways separately and independently of each other. Results clearly prove (in two different ways) that the cause
of the download speed decrease is the php’s cURL library itself, not the consumed API.

Keywords: cURL, php, web services, performance and throughput analysis.
JEL Codes: L86, C8, C9

INTRODUCTION

The cURL project (https://curl.se) is an important milestone in the IT industry. Started in
1998, its aim is to provide free open source standalone tools and libraries for various languages that
allow programmers and applications to connect to and communicate with external resources/
servers by using wide variety of (virtually all) communication protocols. Unix, Linux and MacOS
integrate it in their operating systems by default. A cURL library is available for all popular
programming languages, distributed together with the compiler/interpreter. The cURL libraries are
used not only by server/desktop applications, but by any other Internet-connected devices such as
cars, TV sets, printers, routers, audio equipment, phones, tablets, smart home appliances — fridges,
air conditioners, toasters, irons, lights and other 10T devices. Just a small off-topic deviation here:
In my personal opinion it is not a good idea that all electronic devices should be connected to the
Internet, since most of the small, energy-efficient 10T gadgets have not enough processing power to
implement and support reliable security protocols, so they are quite easily hacked and zombified to
form a large distributed bot-nets that could be subsequently used to perform distributed denial of
service (DDoS) attacks.

When building distributed web applications and systems, cURL is the preferred way of
communication between the separate web services, especially for REST-based services. Distributed
computing is important not just for solving hard, computationally-intensive task, but it is crucial for
heavy-loaded daily-life services such as Google, Facebook and etc., which have millions or billions
of users. As the number of processors and the amount of memory are physically limited per single
computer system, it is impossible for a single system to handle heavy load generated by millions of
users. Since further vertical scaling is impossible, then the horizontal scaling by adding more
machines remains the only feasible option. One of the most popular scalable systems/frameworks
for distributed computing, big data processing and storage is the Apache Hadoop
(https://hadoop.apache.org). It is an entire ecosystem of distributed applications that can run on

> The paper have been presented on 27.10.2023 in session Communication and Computer Technologies with
original tittle: EXPERIMENTAL EVALUATION OF THE PHP'S CURL LIBRARY PERFORMANCE

-28-

mailto:jkalmukov@uni-ruse.bg
https://curl.se/
https://hadoop.apache.org/

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2.

thousands of commaodity servers and reliably store and process petabytes of data. Apache Spark
(https://spark.apache.org) is just a single tool from this ecosystem that could be successfully used to
process and analyze enormous amounts of batch data or streaming data in real time. It could be (and
is) used in many applications, for example: document and text processing (Kalmukov, Y., 2020),
(Kalmukov, Y., 2022); network traffic analysis (Aggarwal, S., 2023); data transformation,
augmentation and enrichment (Aggarwal, S., 2023); profiling users (Aggarwal, S., 2023),
(ProjectPro Team, 2023); and many others, in various industries such as finance, healthcare, media,
e-commerce, retail, travel, gaming industries, government and corporate data processing and others
(ProjectPro Team, 2023).

In order to use the big data processing and analytical tools of the Hadoop ecosystem, a
company (or any organization in general) should first share its data with the Hadoop cluster.
Together with a colleague, we have proposed an architecture for integration of a company’s
heterogeneous data to a remote Hadoop cluster (Kalmukov, Y., & Marinov, M., 2022). It allows
storing and processing both streaming and batch data. In case of large amounts of batch data, the
data files should be stored in the Hadoop Distributed File System (HDFS) first, then passed to
Spark or other tools. There are several ways of saving data to HDFS from within the cluster, but
from outside the most preferable way is the remote access through the WebHDFS API. It allows
third-party applications to connect to remote HDFS file system and write/read files to/from it. Since
WebHDFS is a REST-based API, the most common way of accessing it should be by using the
CURL library from the chosen programming language. As we consider big data processing and
analysis, the data files that should be stored in HDFS are supposed to be very large — in hundreds of
megabytes or gigabytes. So the performance and the throughput of the cURL library really matters
and could highly impact the processing time.

This paper presents a series of experimental analyses aiming to determine the php’s cURL
library performance and throughput. Both the WebHDFS API and the php’s cURL library are tested
in multiple ways separately and independently of each other.

EXPOSITION

Motivation of performing experimental evaluation of the cURL library

In previous experimental analysis of the WebHDFS API throughput (Kalmukov, Y., &
Marinov, M., 2023), | noticed that read (download) speed from WebHDFS reduces with increasing
the file size. Just to mention that the analysis was related to large amounts of data, i.e. files in
hundreds of megabytes or gigabytes. The experimental application is built in PHP that is somehow
atypical programming language for Hadoop, but since WebHDFS is a REST API, it could be
accessed from any programming language or technology. The communication with the API is done
through the PHP’s cURL library. Results also show another unexpected issue — download speed
decreases with the increase of the file size, but the upload (writing) speed remains the same and
very high. Common sense suggests that if there is a decrease in transfer speed, it rather should be in
the writing speed as files are replicated on multiple nodes. But upload speed is constant while
download speed highly decreases with increasing the file size.

Since the communication between the PHP application and the WebHDFS API is handled by
the PHP’s cURL library, then the cause of the download speed decrease could be either the cURL
library itself or the API. That motives me to do some further experiments and to test both the client
and the API independently, in order to determine the guilty part.

Experimental description and architecture

As already mentioned, the experimental application is built in PHP. The communication with
the WebHDFS API is done through the PHP’s cURL library. The “PHP-Hadoop-HDFS” library
does not perform any data processing at all, but just composes the necessary HTTP requests to
access the WebHDFS API. The API could be accessed without PHP-Hadoop-HDFS library, but it
facilitates the access, since the library frees the programmer from having to know the WebHDFS
API itself. The architecture of the experimental system is presented on figure 1.

-29-

https://spark.apache.org/

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2.

The Hadoop cluster consist of 10 rack-mounted servers - 1 name node (2x Intel Xeon Silver
4110, 32 threads / 64 GB RAM) and 9 data nodes (1x Intel Xeon E-2124, 4 cores / 16 GB RAM),
connected through a 24-port gigabit switch, supporting 1 gbit/s per port. For all experiments, the
client application runs on the same laptop computer — Intel i7 (4 cores) / 12 GB RAM, Windows 10
v1607, PHP 7.3.23, cURL library v7.70.

Hadoop Cluster

PHP Interpreter

HTTP
cURL HTTP Internet / www WebHDFS API

e~

Library

Hadoop Distributed

PHP-Hadoop-HDFS File System (HDFS) [ﬁi
Library

Experimental
Application

Local File System [iﬁ

Fig. 1. Architecture of the original system for experimental study of WebHDFS API.

The WebHDFS API is also tested in alternative way by using the built-in cURL command in
MacOS and an external stand-alone cURL application for Windows. Results show that files are
downloading (read) from HDFS with very high speed almost reaching the maximum throughput
capacity of the relevant type of network, regardless of the file size.

So, the causer of the read speed decrease in my previous experiments is, with a high degree of
probability, the cURL library, distributed with the PHP interpreter. Thus, it should be separately and
independently tested. To do so, the same data files are used, but they are uploaded to the file system
of Apache HTTP server, rather than the distributed HDFS.

The revised architecture, for testing the cURL library only, is presented on figure 2. The
“PHP-Hadoop-HDFS” library is removed since the cURL will perform plain HTTP GET requests,
with no parameters, directly to the file resources. The Hadoop cluster is replaced with a single web
server (Intel i5-4570 @ 3.20GHz, 4 cores, 16 GB RAM), running Apache HTTP Server version
2.4.41 on Windows 10 22H2. The server hardware is not of high importance since it is the same for
all experiments and is powerful enough to handle very high speed communication. The client
experimental application runs on the same laptop computer (Intel i7-7500U, 12 GB RAM,
Windows 10 v1607, PHP 7.3.23, cURL library v7.70.) for all experiments in all types of networks.
The client and the server are connected through a 1 gbit/s wired router. Experiments are performed
on 1 gbit/s and 100 mbit/s connectivity.

Test web server
PHP Interpreter
HTTP Apache
cURL HTTP Intemet / www HTFE’ e
Library -
Server’s File System
(NTFS) iﬁ
Experimental Local File System
Application (NTFS)

Fig. 2. Revised architecture of the system for experimental study of php’s cURL performance.

-30-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2.

For the current experiments, | use the same data files as in our previous experiments for
studying the WebHDFS API throughput — small to medium (from 10 to 100 MB, with a step of
10MB), medium (from 100 to 300 MB, with a step of 50MB) and large (500 do 1500MB, with a
step of 500MB).

Results and discussion

Results from the experimental study of the php’s cURL library only also show that download
(read) speed rapidly decreases with the increase of the files size, especially for large files. Results
for small to medium files are shown on figure 3. Figure 4 presents results for medium file sizes, and
figure 5 — for large files up to 1.5 GB.

Download (read) speed from the server's file system over HTTP, in mbit/s
800

700
600 /_/\/__‘
500
400
300

200

100

iomB 20MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB 100 MB
LAN, 100 mb/s 87 88 88 88 89 83 86 82 88 81
=—8=_AN, 1 gb/s 650 731 593 599 653 630 535 617 561 568

Fig. 3. Download (read) speed from the server’s file system over HTTP, for files 10 to 100 MB.

Download (read) speed from the server's file system

Download (read) speed from the server's file system over HTTP, X ;
over HTTP, in mbit/s

in mbit/s

200
600

180
500 160
140
400
120
i 80 \
200 50 °

100 40

20
0

100 M8 150 MB 200 MB 250 MB 300 M8 500 MB 1GB 1.5 GB
LAN, 100 mb/s 81 77 75 71 69 LAN, 100 mb/s 63 47 37
—e=LAN, 1gb/s 568 416 369 295 256 —a=LAN, 1 gb/s 178 90 61

Fig. 4. Download (read) speed from the server’s file system Fig. 5. Download (read) speed from the server’s file
over HTTP, for files 100 to 300 MB. system over HTTP, for files 500 to 1500 MB.

It is obvious that the download speed rapidly decrease with increasing the files size. However
it is interesting to directly compare these lines to the ones obtained during the experimental
evaluation of the WebHDFS API. Thus, figures 6 and 7 present such a comparison for the medium
and large files.

-31-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2.

Download (read) speed from the server's file system over HTTP, Download (read) speed from HDFS through WebHDFS AP, in mbit/s
in mbit/s 600
600
. 500 =
500 \
400 -
400 \. \
300 —_— .
\ ——
300
. 200
200
100
100
¢ 100 M8 150 MB 200 MB 250 MB 300 MB
100 MB 150 MB 200 MB 250 MB 300 MB == nternet 137 137 126 115 112
LAN, 100 mb/s 81 77 75 71 69 LAN, 100 mb/s 66 64 62 61 59
—e=LAN, 1gb/s 568 26 369 295 256 —a=LAN. 1 gb/s 485 388 302 282 257
a) Download speed from the server’s file system over HTTP b) Download speed from HDFS through WebHDFS API

Fig. 6. Download (read) speed from the server’s file system over HTTP
and from HDFS through WebHDFS API, for files from 100 to 300 MB

Download (read) speed from the server's file system Download (read) speed from HDFS through WebHDFS API,
over HTTP, in mbit/s in mbit/s
200 200
180 180
160 160
140 140
120
120
100
100
80 \
60
60
40
40
20
20 o
o 500 MB 1GB 1.5G8
500 MB 1GB 15GB —&=|nternet 102 61 49
LAN, 100 mb/s 63 47 37 LAN, 100 mb/s 55 43 37
—e=LAN, 1gb/s 178 90 61 —e=LAN, 1 gh/s 172 84 60
a) Download speed from the server’s file system over HTTP b) Download speed from HDFS through WebHDFS API

Fig. 7. Download (read) speed from the server’s file system over HTTP
and from HDFS through WebHDFS API, for files from 500 to 1500 MB

It is easily noticeable that the lines of reading data from the server’s file system over HTTP
look quite similar to the lines of reading data from HDFS through the WebHDFS API. Especially
on figure 7 (for large file sizes), lines are almost identical, so the absolute values of the read speed.
It doesn't matter if files are read from the HDFS distributed file system via the WebHDFS API or
from the HTTP server’s file system. If the reading is done using PHP's cURL library, the speed
always decreases as the file size increases, and even at the same rate. This proves that the fault for
the decreasing read speed is not in the WebHDFS API, but in the php’s cURL library. It should be
stated here that it applies to the php’s cURL library only, not to the entire cURL project. The
WebHDFS API was also tested by stand-alone command-line cURL tools (on both Windows and
MacOS) and they achieve constant download speed for all file sizes.

CONCLUSION
After performing dozens of experiments, it could be concluded that:

1. WebHDFS API allows data exchange with the Hadoop Distributed File System (HDFS)
at very high speeds, and in general it is not the limitation factor, but the speed of the
network itself.

-32-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 3.2.

2. The speed of writing files to the HTTP server’s file system, and also to the distributed
HDFS, through the WebHDFS API, by using cURL library for php does not depend on
the files size, but remains constant and is limited only by the network capacity.

3. The speed of reading files from the HTTP server’s file system, and also from the
distributed HDFS, through the WebHDFS API, by using cURL library decreases rapidly
as the file size increases.

4. The reason for the decreasing read (download) speed is not the server side itself, but the
implementation of the cURL library, distributed together with the PHP interpreter.

5. When reading files from the server’s file system over HTTP or from WebHDFS API by
using PHP and cURL, it is mandatory that the PHP interpreter is configured to use a
larger amount of RAM memory than the size of the files being read. This is expected
since the data transfer happens in multiple small network packets, but in order to
reconstruct the file from them, they must be stored and arranged in a common buffer
(located within the RAM memory).

ACKNOWLEDGEMENTS

This paper is supported by project 23-FEEA-01 “Development of models and simulations
with different application areas”, funded by the Research Fund of the “Angel Kanchev” University
of Ruse.

REFERENCES

Aggarwal, S. (2023). Apache Spark Use Cases. First edition July 2015. Last updated: spring
2023, https://www.qubole.com/blog/apache-spark-use-cases (Accessed on 26.11.2023)

Kalmukov, Y. (2020). Automatic Assignment of Reviewers to Papers Based on Vector Space
Text Analysis Model. Proceedings of the 21st International Conference on Computer Systems and
Technologies, CompSysTech 2020, Association for Computing Machinery, NY, USA, 2020, pp.
229-235, DOI: https://doi.org/10.1145/3407982.3408026

Kalmukov, Y. (2022). Comparison of Latent Semantic Analysis and Vector Space Model for
Automatic Identification of Competent Reviewers to Evaluate Papers. International Journal of
Advanced Computer Science and Applications (IJACSA), No 13(2), pp. 77-85, ISSN 2156-5570,
2022. DOI: http://dx.doi.org/10.14569/IJACSA.2022.0130209

Kalmukov, Y., & Marinov, M. (2022). Hadoop as a Service: Integration of a Company’s
Heterogeneous Data to a Remote Hadoop Infrastructure. International Journal of Advanced
Computer Science and Applications (IJACSA), 2022, No 13(4), pp. 49-55, ISSN 2156-5570, DOI:
http://dx.doi.org/10.14569/IJACSA.2022.0130406

Kalmukov, Y., & Marinov, M. (2023). Experimental Analysis of WebHDFS API Throughput.
International Journal of Advanced Computer Science and Applications, 2023, No 14(4), pp. 44-50,
ISSN 2156-5570, DOI: http://dx.doi.org/10.14569/IJACSA.2023.0140407

ProjectPro Team. (2023). Top 5 Apache Spark Use Cases, ProjectPro, Nov 2023,
https://www.projectpro.io/article/top-5-apache-spark-use-cases/271 (Accessed on 26.11.2023)

Schrenk, M. (2012). Webbots, spiders, and screen scrapers: A guide to developing Internet
agents with PHP/CURL. No Starch Press.

-33-

https://www.qubole.com/blog/apache-spark-use-cases
https://doi.org/10.1145/3407982.3408026
http://dx.doi.org/10.14569/IJACSA.2022.0130209
http://dx.doi.org/10.14569/IJACSA.2022.0130406
http://dx.doi.org/10.14569/IJACSA.2023.0140407
https://www.projectpro.io/article/top-5-apache-spark-use-cases/271

