

INTRODUCING VACUUM MOORING TO IMPROVE MARITIME SAFETY¹²

Chief Ass. Prof. Ivan Conev, PhD

Department of Operation and Management of Maritime Transport,
Nikola Vaptsarov Naval Academy, Varna, Bulgaria
Tel.: +359 888435977
E-mail: i.tsonev@nvna.eu

Chief Ass. Prof. Dobrin Milev, PhD

Department of Operation and Management of Maritime Transport,
Nikola Vaptsarov Naval Academy, Varna, Bulgaria
Tel.: +359 895742374
E-mail: d.milev@nvna.eu

Abstract: Mooring is among the most common of all maritime tasks, but still is one of the most dangerous. The UK P&I Club, a marine insurer, has reported that over the last 20 years 58% of maritime injuries occur during mooring. Therefore, the industry is looking for ways to reduce the risk in mooring operations and to improve safety. The paper introduces the vacuum system for automatic mooring and its advantages over the traditional mooring system. Apart from the main benefit of minimizing the risk of injury, there are quite a few other significant benefits: (1) no more using ropes and wires, (2) berthing is automated and carried out by the ship's master from the bridge and (3) shortens the time for mooring and unmooring several times, which in turn shortens the stay of the ship and as a final result - the economic efficiency of the voyage as well as reducing harmful emissions in these ports. The vacuum mooring also solves very effectively the existing problems when the ship is moored in a lock or in a port with strong tidal phenomena. Many ports have already implemented the vacuum mooring system. To the end of 2022 more than 1 million mooring operations have been carried out worldwide.

The automated vacuum mooring definitely is a revolution in port operations and it is the future in port-to-ship interaction, especially with the expanding development and entering into ever wider operation of semi-autonomous and fully autonomous ships.

Keywords: Port Operations, Automation, Mooring, Maritime Safety, Vacuum, Ship Efficiency

JEL Codes: L9

REFERENCES

Bellingmo, P., Jørgensen, E. (2022). Automatic Mooring: Technical Gap Analysis. URL: https://www.ntnu.edu/documents/1294735132/0/sfi_automated_mooring_technical_gap_analysis.pdf (Accessed on 08.08.2023).

Diaz, E. (2017). Evolution of automatic systems mooring systems in commercial ports. *Journal of Maritime Research*, Vol XIV. No. I (2017), 58–66.

European Maritime Safety Agency (EMSA) (2022). Annual Overview of Marine Casualties 2022, 43. URL: <https://emsu.europa.eu/csn-menu/items.html?cid=14&id=4867> (Accessed on 30.05.2023).

Himanen, L. (20016). *Alternative mooring systems*. Bachelor's Thesis, University of Applied Sciences. URL: https://www.thesius.fi/bitstream/handle/10024/111541/Himanen_Laura.pdf?sequence=1

Kuzu, A., Arslan, O. (2017). Analytic comparison of different mooring systems. URL: <https://www.researchgate.net/publication/326994892> (Accessed on 11.09.2023).

¹ Докладът е представен на научна сесия на 27 октомври 2023 в секция УИТСЛ с оригинално заглавие на български език: ВЪВЕЖДАНЕ НА ВАКУУМНО ШВАРТИРАНЕ ЗА ПОДОБРЯВАНЕ НА МОРСКАТА БЕЗОПАСНОСТ

² Докладът е публикуван в сборник с BEST PAPER Cristal Prise 2023