PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

FRI-1.414-MIP-04

3D TERRAIN GENERATION SUBSYSTEM*

Pr. Assist. Prof. Valentin Velikov, PhD

Department of Informatics and Information Technologies,
University of Ruse “Angel Kanchev”

Tel.: +359 886 011 544

E-mail: vvelikov@ami.un-ruse.bg

Salih Redjeb, Student

Department of Computer Science,
University of Ruse “Angel Kanchev”
Tel.: +359 896 122 807

E-mail: salih.redjeb@gmail.com

Abstract: The article discusses a newly created subsystem for generating 3D terrain. Existing systems, their
positive features and disadvantages are described. The need for the development of one's own is determined.

There are described the used technologies and algorithms - existing ones, recreated and new ones developed. The
adapted mathematical apparatus for 3D modeling, pathfinding in space, coloring and terrain editing is described. As a
result, it wgas created an original development (web-based client-server application), which can be used in creating
games, virtual reality systems, virtual worlds, virtual routes into existing maps and objects, simulation of natural
phenomenas and cataclysms with subsequent training of rescue teams, etc.

The generated terrain/world can be exported from the environment and imported into another system where
additional functionalities can be added to it.

Keywords: 3D terrain generation, Software Engineering, Information systems.

INTRODUCTION

3D terrain generation is relevant for applications in various fields: such as games, virtual reality,
simulations, geographic information systems, architecture, and others.

Such a subsystem - for generating 3D terrain - can be built in different ways, but the main goal
is to generate realistic terrain that meets the requirements of the specific application. This can be
achieved by using various algorithms and methods, such as Perlin noise, Fractal noise, Voronoi
diagrams, etc. To achieve a realistic terrain, it is important to take into account many factors, such as
the topography of the area, the type of soil, various natural objects (mountains, rivers, forests and
others). Therefore, it is necessary to use appropriate algorithms and methods for terrain generation.
In addition to terrain generation, the subsystem can have other functions, such as terrain optimization
for better real-time performance, texture generation, adding various objects such as buildings, trees,
animals, and others. To achieve better performance and efficiency of the subsystem, various
optimization techniques can be used - dynamic leveling of terrain details, use of standardized data
formats, and others.

At the beginning of the project, it is important to conduct a detailed analysis of the application
requirements and to define the specific functionalities that must be implemented. This may include
requirements for terrain visualization, terrain manipulation, interaction with other objects in the scene,
and more. Once the application requirements are defined, the appropriate set of algorithms and
methods to be used to generate 3D terrain should be selected. This may include noise terrain
generation algorithms, realistic texture generation methods, and more. Once the appropriate
algorithms and methods have been selected, the software architecture of the 3D terrain generation
subsystem must be designed and implemented. This may include creating terrain generation modules,
terrain visualization modules, and terrain manipulation modules.

4 JloknambT € mpejcTaBeH Ha KoHdepeHuus Ha PyceHckus yHuBepcuTeT Ha 27 okToMBpu 2023 T. B CeKLus
,MaremaTnka, nHGOpMaTHKa 1 HU3NKa“*.

-26 -

mailto:salih.redjeb@gmail.com

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

EXPOSITION

1. Overview of existing systems
There are many 3D terrain generation systems of similar capabilities aimed at different needs
and applications. Some of the most popular ones on the market right now are:

Unity[1] World Machine[3]

Unreal Engine[2]

- 3

durypa 2 - Unreal nine ®urypa 3 - World Machine

@urypa 1 - Unity Tepen TepeH TepeH

Terragen[4] L3DTI[5] Gaia[6]

@urypa 4 - Terragen TepeH @urypa 5 - L3DT tepen hd)nrypa 6 - Giaia TepeH

Comparison of the considered systems (Table 1):
Table 1 - Comparison of the considered systems

system price graphlcal used methods ot
interface platforms
Unit free/paid Yes Perlin noise, Windows,Mac,
y P Vorni diagrams, Heightmaps Linux,lI0S,Android
Unreal free/paid Yes Simplex noise, Vorni diagrams, | Windows,Mac,
Engine P Perlin noise, Erosin simulation Linux,lI0S,Android
World aid Yes Perlin noise, Erosion simulation, Windows
Machine | P Fractal noise,Hydraulic erosion
Terragen | paid Yes Perll_n noise, Hy_draullc erosion Windows,Mac
Erosion simulation,

L3DT free/paid Yes Perlin noise, Erosion s_lmulat!on, Windows
Fractal noise, Hydraulic erosion

Gaia paid Yes Perllr_] noise, Erosion mm_ulaﬂory, Windows
Vorni diagrams, Hydraulic erosion

All the discussed systems have certain characteristics that make them effective for generating
3D terrains. For example, Unity and Unreal Engine are good for generating terrains for PC games
and virtual reality, offering a lot of options for setting up and detailing the terrain. WorldMachine and
Terragen are very suitable for creating realistic geographical formations, offering different tools to
mix different types of noises and filters to achieve the desired results. L3DT is particularly useful for
generating large terrains with a lot of detail, offering many options for setting up and controlling the
terrain. Finally, Gaia is a good choice for generating terrains for Unity, offering easy integration with
this game platform and many options for setting up the terrain. Therefore, for a program to be a good
terrain generator, it must have many terrain tuning and control options, as well as be able to generate
different types of noise and apply different filters. It is also important to have options for layered

-27-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

texturing of the terrain, allowing for the addition of various elements such as vegetation, rocks, water
surfaces and more. In addition, it is important that the program can create high-detail terrains, as well
as be able to generate large terrains with small details, offering performance optimization options.

2. System design, technologies used
2.1. Used technologies
In order to design the 3D terrain generation system, one must have a clear idea of the
technologies used and their functionality. In this case HTML, CSS, Scss, Javascript, THREE js, Vite
and React are used. HTML, Css, Scss are not key to generating the terrain, but are used to create the
user interface. Javascript, Three js and Vite are essential.
2.1.1. Javascript
JavaScript [7] is an interpreted language, which gives it great flexibility, this makes it suitable
for different types of tasks such as user interaction, data validation, building animations and many
more. Today, it is widely used for both web and mobile application development and desktop
software, such as online games, social networks, job search applications, and many others.
2.1.2. Three.js
Three.js is a JavaScript library used to create interactive 3D graphics in web browsers. It is
based on WebGL, which is a low-level API (Application Programming Interface) for rendering 3D
graphics in web browsers [8].
Three.js functionality will be used to render three-dimensional objects, add light in space, add
object colors, camera and basic camera movements, add background texture.
2.1.3. Vite
Vite is a modern JavaScript bundler and dev server that is used to create modern web
applications. A bundler is a tool that bundles different files into one place, usually into a single file
that can be used by browsers. This includes JavaScript files, CSS files, HTML files, images and other
resources used in the web application [9].
Vite also has a built-in dev server that allows developers to see the changes they make to the
web application in real-time without the need to restart the server or reload the web page.

2.2. System design

2.2.1. Creating a scene

The first thing to do is to initialize the three js scene. In Three.js, a Scene is an object that
represents the 3D space in which all objects and graphics are placed and manipulated. This can
include geometric shapes such as cubes, spheres, cylinders and more, as well as lights, cameras,
materials, textures and other elements. The scene is responsible for rendering all objects and elements
in 3D space. It contains all the objects that need to be visualized and manages them so that a visual
view of them can be provided.

After initializing the scene, three js renderer and camera should be created. In Three.js, the
Renderer and the Camera are two of the most important components used to render 3D objects and
scenes.

The renderer is responsible for generating an image on the screen that is rendered based on the
3D scene and camera. The renderer can be configured to support various rendering options, such as
lighting settings and other effects.

The camera in Three.js is a component that determines where in 3D space the viewer is. This
includes settings such as camera position, viewpoint angle, size, and more. All objects in the scene
are rendered relative to the camera position, allowing the viewer to see different parts of the scene as
the camera moves or rotates.

The Three.js renderer and camera work together to generate screen images based on the 3D
scene. The renderer uses the information from the camera to calculate how to render the scene and
generate the image that is rendered on the screen.

Next is setting the height and width of the render, initially small values will be set (e.g. height
and width - 500 pixels each) in order not to load the processor, and finally, after all the settings - the
dimensions can be increased to the required ones. Next is a scene illumination (eg: in Y: 100 units,

-28 -

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

and it points to the center of the scene). The background so far is black, which is not always
convenient - the solution is to add a texture (provided by Three js). (fig.7)

2.2.2. Create a plane

Next is a choice of way to create a plane in three-dimensional space. For this, an appropriate
data structure in Three.js must be chosen to do the job efficiently. Several different data structures
can be used:

e PlaneGeometry - it is a geometric shape that creates a plane in 3D space. This geometry can
be used to create a plane with a specified width and height.

e BufferGeometry - it is a lower level of abstraction that allows faster generation of geometry
by using data arrays. This geometry can be used to create a plane with a specified width and height.

e Mesh - it is an object that can be used to represent geometry in 3D space. It can include a
plane that is created using PlaneGeometry or BufferGeometry.

e PlaneBufferGeometry - it is an optimized version of PlaneGeometry that uses data arrays to
achieve better performance.

clylzlix]y[z[x]y[z]x]y]z][x]y[z]x]y[z]x]|y][z]x]Y][Zz]x]Y]Z
Fig. 8 — BufferGeometry array

BufferGeometry is preferred because the system needs to work quickly with a large number of
triangle-polygons. Two constants (mapWidth and mapHeight) define the size of the plane in three-
dimensional space. It will be broken up into small square areas for plane generation. Then the points
on the surface are generated, the distance between the points on the plane in X and Y direction is
calculated. A positions array (fig.8) is generated, containing the X, Y and Z coordinates of all points
on the plane (until now Y=0). Triangles are generated (Fig. 9) that will form the plane (Fig.10).

After all the points and triangles have been generated, the attributes of the buffer geometry are
set. This is done through the setindex and setAttribute methods, which set the point indices and their
coordinates respectively.

The end result of this code is a buffer geometry that represents a surface with dimensions
mapWidth x mapHeight and with width x height points (Fig. 10).

Fig. 7 - Scene ; Fig. 8 - Treangles Fig. 9 - Plane

2.2.3. Perlin noise

After a plane is generated, terrain should be generated on top of it (i.e. — bumps and depressions
in the plane). Several ways are possible, Perlin noise will be used.

The problems with random noise [10] are the sudden changes in values. This results in very
jagged and unrealistic terrain. And here Perlin-noise comes to the rescue.

Perlin noise is a type of gradient noise developed by Ken Perlin in 1983. It has many
applications, such as: procedurally generating terrain, applying pseudo-random changes to a variable,
and helping to create image textures. It is most often applied in two, three, or four dimensions, but
can be defined for any number of dimensions.

Perlin noise is a procedural texture primitive, a type of gradient noise used by visual effects
artists to increase the realism of computer graphics. The feature has a pseudo-random appearance,

-29-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

but all its visual details are the same size. This property allows it to be easily controlled; multiple
scaled copies of Perlin noise can be inserted into mathematical expressions to create a wide variety
of procedural textures. Synthetic textures using Perlin noise are often used in CGI to make computer-
generated visuals — such as object surfaces, fire, smoke or clouds — appear more natural by mimicking
the controlled random occurrence of textures in nature [11].

‘

Flg. 10 — random Flg. 11 — random Fig. 12 — Perlin noise Fig. 13 - Three

noise noise - plane - plane octaves

A 5-argument function is developed that takes a number from a given range and converts it to
a number from another range. It will use 2 more helper functions: the first will normalize the number
in a given range, and the second will calculate the value in the new range. This is what the plane looks
like (Fig. 12) if for each point the Y coordinate is shifted according to a value given by random noise
with a range of 0-1 and is converted to a range of 0-20.

2.2.4. Adding octaves

Octaves in Perlin noise terrain generation are used to add detail and realism to the generated
terrain. Perlin noise is generated as a combination of noises at different frequencies (different
"octaves").

Each octave includes noise with a higher frequency than the previous one and a smaller
amplitude. When the octaves are combined, the higher frequencies of the noise contribute to adding
detail and fine detail to the generated terrain, while the lower frequencies give large contours to the
generated terrain (Fig. 15).

2.2.5. Coloring the terrain

Terrain visualization can be improved by using values in the range 0 to 1 returned by Perlin
noise. Low values can be associated with water features and high values with hills, mountains and
other terrain types.

After applying the colors in the respective ranges, the following result is obtained (Fig. 20).
However, the boundaries between different colors are too sharp. One solution to this problem is linear
interpolation — a new one is generated between 2 adjacent points, for which a new color is calculated
and determined (fig. 21).

Example values embedded in the system (Table 2):

Table 2 — Example values for the coloring ranges

SN A

Value Color
0-0.15 Blue
0.15-0.2 Yellow
0.2-0.25 Light Green
0.25-0.4 Dark Green
04-0.6 Light Brown
0.6 -0.75 Dark Brown
0.75-1 White

The water level should also be leveled - in the event that the relief in the water is not desirable.
The change is easy - when generating the Perlin noise if the noise level is below 0.15 it is set to 0.15
(Fig. 23).

-30 -

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

Fig.4 - colors Fig.15 colors witha Fig.16 - uneven water Fig.17 - leveled water
without a smooth smooth transition
transition

2.2.6. Height map

A height map is a type of graphic that is a two-dimensional black-and-white or color image that
is used to determine the height of points in three-dimensional space. Each point on the height map
corresponds to a point in the three-dimensional space, and the color or brightness of the corresponding
point in the picture determines the height of the point in the three-dimensional space [12]. The steps
are similar to the previous ones (BufferGeometry, HTML canvas; after attaching the image to the
canvas context, getimageData returns an array with information about the ARGB values for the
pixels).

2.2.7. Finding the shortest path

To implement finding the shortest path, The Dijkstra's algorithm for finding the shortest path
between two points is taken and implemented.

Dijkstra's algorithm is one of the most popular algorithms for finding the shortest path in a
graph with non-negative edge weights. It is an iterative algorithm that works by moving from the start
vertex to the end vertex, selecting the node with the smallest distance from the start vertex and
updating the distances of all its neighbors. This is repeated until the final vertex is reached or until all
nodes are traversed [13]. The Dijkstra algorithm is suitable because it works with edge weights. This
is useful in this case, as the system will label high areas as mountains and therefore more difficult to
traverse. The function implementing the Dijkstra algorithm works according to the following
algorithm:

1. The starting point is set, which is known to be at a distance of 0 from itself.

2. For every other vertex, two variables are initialized - the distance from the starting point and
the previous vertex with values infinity and undefined respectively.

The starting point is placed in a list that will contain the vertices to be checked.

The main loop begins, which runs until the list is empty.

The vertex with the smallest distance is extracted.

For each neighbouring vertex of the current one, which is not marked as visited and is not
an obstacle, the distance to the starting vertex is calculated. If this distance is less than the
current distance to the neighbour, then the distance and the previous vertex of the neighbour
are updated, and the neighbour vertex is added to the list to be checked later.

7. The current vertex is marked as visited.

8. The current peak is removed from the list.

9. After the loop is finished, the shortest path to the set point is returned in the list of all vertices.

After finding the shortest path, a red line is drawn slightly higher than the terrain so that it can
be easily distinguished by the user.

2.2.8. Terrain modelling

This functionality enables manual modelling of the terrain - raising or lowering circular areas
using the left or right mouse button. The radius and height can be adjusted.

2.2.9. Creation of the graphical interface of the system

Used technologies are HTML, Css/Scss, React, Redux.

ok w

The generated terrain can be converted to a .glb or .gltf format file, which can then be
downloaded to a local drive. These are two supported and used file formats that work on the major
and well-known programs for modelling and working with 3D models.

-31-

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

CONCLUSION

Testing of the system has shown that the terrain it generates has a high level of detail and is
able to reproduce a variety of landforms, including mountains, valleys, and more. Able to produce
terrains that meet the needs of various projects and applications.

It is recommended when using the system not to modify or change settings or colors on a large
number of points making up the terrain. The large number of points puts a strain on the system and
makes changing settings and mods slower and less user-friendly. It is recommended to change the
settings when the number of points is low and as a final change to increase the number of points.
Possible applications of the generated terrain: games, virtual reality, simulation of natural phenomena,
etc.

Ideas for further development:

e Creation of a library of blanks (primitives) that can be used to build the terrains: caves,
waterfalls, rivers, paths, forests, trees, stumps, cars, ships, planes, various animals, etc.

e Import of 2D maps to generate 3D terrains: these maps can be in different formats such as
.Jjpg and loaded into the system. Once the map is imported, the system can analyse the different colors
and their values to determine the terrain height and generate a 3D model that matches the input map.
This will allow users to create 3D terrains based on real geographic or physical data.

ACKNOWLEDGMENTS

This publication reflects research from the scientific project 23-FPNO-02 “Investigation of
effective knowledge management mechanisms applied in software engineering when creating

projects with Agile methodologies” - of the “Scientific Research™ fund of Ruse University “Angel
Kanchev”, 2023.

REFERENCES

[1] Unity Manual, Unity - Manual: World building (unity3d.com), 15.02.2023,
https://docs.unity3d.com/Manual/CreatingEnvironments.html

[2] Unreal Engine Documentation, Landscape Outdoor Terrain | Unreal Engine 4.27
Documentation, 15.02.2023,
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/Landscape/

[3] World Machine Features, World Machine Features for Terrain Generation (world-
machine.com), 15.02.2023, https://www.world-machine.com/features.php

[4] Terragen, Feature Tour — Planetside Software, 15.02.2023,
https://planetside.co.uk/terragen-feature-tour/

[5] L3DT documentation, 13dt:userguide [BundyDocs] (bundysoft.com), 16.02.2023,
http://www.bundysoft.com/docs/doku.php?id=13dt:userguide

[6] Gaia, Gaia Pro - Terrain And Scene Generator | Procedural Worlds (procedural-
worlds.com), 17.02.2023, https://www.procedural-worlds.com/products/professional/gaia-pro/

[7] Javascript, JavaScript - Wikipedia, 20.02.2023,
https://en.wikipedia.org/wiki/JavaScript#:.~:text=JavaScript%20(%2F%CB%88d%CA%92%C9%9
1%CB%90v,often%?20incorporating%20third%2Dparty%?20libraries.

[8] Three.js, Three.js - Wikipedia, 20.02.2023, https://en.wikipedia.org/wiki/Three.js
[9] Vite.js, Why Vite | Vite (vitejs.dev), 20.02.2023, https://vitejs.dev/guide/why.html
[10] White noise - Wikipedia, 23.02.2023, https://en.wikipedia.org/wiki/White_noise

[11] Perlin noise - Wikipedia, 23.02.2023,
https://en.wikipedia.org/wiki/Perlin_noise#:~:text=Perlin%20n0ise%20is%20a%20procedural,detai
1s%20are%20the%20same%?20size.

[12] Heightmap - Wikipedia, 25.02.2023, https://en.wikipedia.org/wiki/Heightmap

-32-

https://docs.unity3d.com/Manual/CreatingEnvironments.html
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/Landscape/
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/Landscape/
https://www.world-machine.com/features.php
https://www.world-machine.com/features.php
https://planetside.co.uk/terragen-feature-tour/
http://www.bundysoft.com/docs/doku.php?id=l3dt:userguide
https://www.procedural-worlds.com/products/professional/gaia-pro/
https://www.procedural-worlds.com/products/professional/gaia-pro/
https://en.wikipedia.org/wiki/JavaScript#:~:text=JavaScript%20(%2F%CB%88d%CA%92%C9%91%CB%90v,often%20incorporating%20third%2Dparty%20libraries.
https://en.wikipedia.org/wiki/Three.js
https://vitejs.dev/guide/why.html
https://ecsunirusebg-my.sharepoint.com/personal/yaliev_ecs_uni-ruse_bg/Documents/РУ/НК%20на%20РУ/НК%20на%20РУ%202023/3.%20Научни%20трудове/FPNO/6.1%20(MIP)/White%20noise%20-%20Wikipedia
https://en.wikipedia.org/wiki/Perlin_noise#:~:text=Perlin%20noise%20is%20a%20procedural,details%20are%20the%20same%20size.
https://en.wikipedia.org/wiki/Heightmap

PROCEEDINGS OF UNIVERSITY OF RUSE - 2023, volume 62, book 6.1.

[13] DDijkstra's Shortest Path Algorithm - A Detailed and Visual Introduction
(freecodecamp.org), 27.02.2023, https://www.freecodecamp.org/news/dijkstras-shortest-path-
algorithm-visual-introduction/

-33-

https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/

