FRI- KC.H2-1-TMS-06

ANALYSIS ON THE EFFECTS OF THE GEOMETRY OF THE INTAKE MANIFOLD ON VOLUMETRIC EFFICIENCY USING CFD METHODS⁶

Ivaylo Nikolaev Borisov, PhD student

Department of Engines and Vehicles, University of Ruse "Angel Kanchev" Tel.: 0888 469 868 E-mail: <u>iborisov@uni-ruse.bg</u>

Abstract: The main goal of this study is to investigate the effects of the intake geometry on volumetric efficiency. The shape, cross sectional area and length of the runners are optimized. Three-dimensional time-dependant computational fluid dynamics (CFD) simulation is conducted in Ansys Fluent. During the study a total of 18 different geometries were designed and their effects of volumetric efficiency investigated at constant engine speed of 6000 rpm. During the simulation the velocity, mass flow rate and pressure loss of the air-fuelf mixture are measured at different locations in the intake manifold and plotted in real time.

Keywords: Volumetric Efficiency, CFD, Intake Mnaifold, Intake Geometry.

въведение

Една голяма част от времето за конструиране на нов двигател се отделя за пълнителната система. Подобряването на характеристиките на двигателя и намаляване на емисиите, започва с добре конструирана и оптимизирана пълнителна система (Iliev, S. 2020). За нормалното функциониране на двигателя в целия честотен диапазон, той трябва да да бъде снабден с въздух и гориво в определено съотношение, като по този начин горенето в цилиндъра протича при оптимални условия (Hall, B., Wheatley, G., Zaeimi, M., 2021), (Iliev, S. 2014).

Геометрията на пълнителната система и на колекторите имат пряко влияние върху динамиката на потока преминаващ през тях (Silva, E., Ochoa, A., Hernandez, J., 2019). Когато всички параметри са оптимизирани, коефициента на пълнене нараства, което от своя страна води до подобрение на параметрите на целия двигател (Jason, A., Omkar, S. Siras, B., 2019). С нарастването на коефициента на пълнене емисиите отделени от двигателя намаляват (Banis, K. 2018).

Разработен е V-образен двигател с обем от 22 cm² (Фиг.1), атмосферен и поради малкия размер на двигателя е изпозлван елементарен карбуратор. Целта на тази работа е да оптимизира пълнителната система за този двигател.

Разработени са 18 различни геометрии, показани в Таблица 1. Обемът на смесителната камера остава постоянен за всички геометрии. Площта на напречното сечение бива малка и голяма за всяка от трите форми. При разработването на пълнителните системи беше необходимо те да бъдат с равни по площ напречни сечения, дори когато формата им е различна. За целта е изчислен и използван хидравличния диаметър за всяко напречно сечение.

3D моделите са разработени в среда SolidWorks след което импортирани в Ansys Fluent, където е проведено и изследването.

ИЗЛОЖЕНИЕ

Поради малките размери на двигателя дължината на пълнителните колектори, от найкъсия до най-дългия, не се променя съществено, но формата на самия колектор се изменя

⁶ Докладът е представен на научна сесия на 25 октомври 2024 с оригинално заглавие на български език: АНАЛИЗ НА ВЛИЯНИЕТО НА ГЕОМЕРТИЯТА НА ПЪЛНИТЕЛНАТА СИСТЕМА ВЪРХУ КОЕФИЦИЕНТА НА ПЪЛНЕНЕ С ПОМОЩТА НА СFD.

значително Фиг.1. На Фиг.2а е показан най-късият колектор, при който ясно се вижда 45° коляно в пълнителния колектор точно преди блока на двигателя. На Фиг.2в е показан найдългият колектор, при който коляното вече не се забелязва, а точно обратното, вече е налице плавна крива с голям радиус на закръгление.

Фиг.1. Общ изглед на двигателя.

Изчислителната решетка на модела е създадена в Ansys Fluent, като първо модела се затваря херметически и след това с командата Fill той се запълва и се определя вида и броя на елементите. Изчислителната решетка се състои предимно от елементи с формата на триъгълна пирамида и шестостен. Броя на елементите за всяка геометрия е постоянен, до колкото е било възможно, имайки предвид промяната във формата и обема на разглежданата геометрия.

Фиг. 2. Промяна на формата на колектора с увеличаване на дължината му.

За решаването на тази задача от програмата е изпозлван солвър който се базира на налягането в системата (pressure-based solver). Типа на потока е избран като непостоянен, с гравитационна сила действаща по ос Y с отрицателен знак.

Форма на напречно сечение	Площ на напречно сечение, mm ²	Дължина на колектор, mm	Брой елементи в изчислителната решетка	Брой на възлите в изчислителната решетка	
Кръг	15.9	19.57	961 439	1 774 976	
Кръг	15.9	19.99	965 163	1 785 872	
Кръг	15.9	20.61	959 699	1 735 823	
Кръг	28.26	19.57	949 041	1 698 951	
Кръг	28.26	19.99	951 590	1 695 596	
Кръг	28.26	20.61	951 197	1 719 996	
Овал	21.14	19.57	973 197	1 889 867	
Овал	21.14	19.99	976 305	1 872 539	
Овал	21.14	20.61	981 568	1 911 035	
Овал	31.64	19.57	983 377	1 822 080	
Овал	31.64	19.99	986 427	1 882 437	
Овал	31.64	20.61	985 214	1 845 271	
Правоъгълна	22.0	19.57	965 820	1 754 413	
Правоъгълна	22.0	19.99	959 878	1 717 001	
Правоъгълна	22.0	20.61	966 012	1 756 144	
Правоъгълна	32.5	19.57	970 409	1 918 123	
Правоъгълна	32.5	19.99	961 005	1 927 641	
Правоъгълна	32.5	20.61	973 731	1 920 803	

Таблица 1. Форма и площ на напречното сечение и дължина на пълнителните колектори, брой на елементите в изчислителната решетка.

Потокът е многофазен и поради тази причина е използван модел за решаване на именно такъв поток (фиг.3). Потокът е съставен от два флуида: въздух и гориво (течен п-октан) (Фиг.4).

🥌 Multiphase Model				×
Models	Phases	Phase Interaction	Population Balance Mod	del
Model	Model Parameters	Numbe	er of Eulerian Phases	
 Off Homogeneous Models: Volume of Fluid Mixture Wet Steam Inhomogeneous Models: Eulerian 	Slip Velocity Flow Regime Model	ing 2		•
Body Force Formulation	Volume Fraction Para	meters Option	ns	
Implicit Body Force	Explicit Implicit		e Sharp/Dispersed Dispersed	
	Apply	ose) (Help)		

Фиг. 3. Прозорец за настройване на модела за многофазен поток.

Models	Phases	Phase Interaction	Population Balance Model
Phases	Phase Setup		
	Name		ID
air - Primary Phase	fuel		3
fuel - Secondary Phase	Phase Material	\square	
	n-octane-liquid	▼ Edit	
	Granular		
	Interfacial Area (Concentration	
	Diameter [m]		
	constant	▼ Edit	
	constant	Luca	
	1e-05		
Add Phase Delete Phase			

PROCEEDINGS OF UNIVERSITY OF RUSE - 2024, volume 63, book 4.1.

Figure 4. Прозорец за настройка на фазите на потока.

Граничните условия на горивото и въздуха в местата от където те се подават към пълнителната система са следните: налягането е атмосферно при стайна температура (20°С). Задаването на граничните условия за изходите на системата (в цилиндрите) е показано на фиг. 5. За целта налягането в цилиндъра е представено като функция на времето. След което получените стойности се подреждат в определен формат, с цел, да бъдат разпознати от софтуера. Така въведеният файл се зарежда в полето "Gauge Pressure".

Zone Name						Phas	se	
cyl1-outlet						mix	ture 🔻	
Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	Structure	UDS
		Gau	ge Pressure	cyl1 pre	essure			•
	1	Pressure Prof	ile Multiplier	1				•
Backflow Dire	ction Specifi	cation Method	Normal to E	Boundary	/			
Backf	low Pressure	Specification	Total Press	ure				Ŧ
Radial Equ	ilibrium Pres	sure Distribut	ion					
	Turbulen	0e						
	Specific	ation Method	Intensity and	d Viscosi	ty Ratio			-
	Bac	kflow Turbule	nt Intensity [%] 5				-
	Backflow	Turbulent Vis	cosity Ratio	10				•
			Apply	Close	Help			

Фигура 5. Гранични условия за първи цилиндър.

Следваща стъпка е метода по който ще се реши поблема (фиг.6.). Избрана е опцията "Coupled", която едновременно решава уравнението за импулса и уравнението за налягането като паралелно с това прави корекции за скоростта и налягането в системата и изчислява обемните фракции на сместа. Също така е избрана и опцията "Solve N-phase Volume Fraction Equations". Тази опция, когато включена, решава уравненията, поотделно за всяка фаза на потока, след което сумата от всички фази трябва да бъде равна на 1.

Task Page 🔇
Solution Methods
Pressure-Velocity Coupling
Scheme
Coupled
✓ Solve N-Phase Volume Fraction Equations
Spatial Discretization
Gradient
Least Squares Cell Based
Pressure
PRESTO!
Momentum
Second Order Upwind
Volume Fraction
QUICK
Turbulent Kinetic Energy
Second Order Upwind
Turbulent Dissipation Rate
Second Order Upwind
Pseudo Time Method
Off
Transient Formulation
First Order Implicit
□ Non-Iterative Time Advancement Options
Frozen Flux Formulation
Warped-Face Gradient Correction
High Order Term Relaxation
Default

Фигура 6. Прозорец за задаване на метода на решение

На Фиг.7. са показани контролните точки (мониторите) в които стойностите на следните параметри са измерени в реално време: налягане и скорост на потока, масов дебит и отношение на гориво/въздух.

Фигура 7. Контролни точки.

Една трета от резултатите от изследването са показани на Фиг. 8. На фигурата са показани резултатите за правоъгълна форма на напречното сечение. Загубите в колекторите са обозначени с ζ , които представляват сума от линейни загуби причинени от триене и местни съпротивления. След което сумарните загуби ζ са представени като фунцкия на числото на Рейнолдс (Re). Абревиатурите "ГС" и "МС", съответстват на голямо напречно сечение и малко напречно сечение съответно, "п" съответства на правоъгълно напречно сечение, а числата от 1 до 3, представляват дължината на пълнителните колектори, като 1 е на-късия, а 3 е най-дългия.

Фиг. 8. Резултати от симулационния процес.

ИЗВОДИ

От резултатите преставени на фиг.8 се вижда, че пълнителния колектор с най-малки загуби от представените принадлежат на ГС-п-3. Дължината на пълнителния колектор при тази геометрия е най-дълъг, което означава, че загубите от триене са по-големи в сравнение с другите 3, но от друга страна загубите от местно съпротивление са най-малки поради формата на пълнителния колектор. От двата вида загуби, загубите от местно съпротивление имат по-голям ефект върху сумарните загуби ζ .

Изследванията са подкрепени по договор на Русенски университет "Ангел Кънчев" с No 2024-РУ-02 "Разработване и изследване на системи за оптимизиране на разхода на енергия на електромобил от клас прототипи"

REFERENCES

Iliev, S. (2020). Investigation of the Gasoline Engine Performance and Emissions Working on Methanol-Gasoline Blends Using Engine Simulation, Numerical and Experimental Studies on Combustion Engines and Vehicles, Paweł Woś and Mirosław Jakubowski, IntechOpen

Hall B., Wheatley G., Zaeimi M. (2021), On the design of of the manifold for a race car. (Periodica Polytechnica Mechanical Engineering 65(2) pp. 171-179).

Iliev S. (2014) Developing of a 1-D Combustion Model and Study of Engine Characteristics Using Ethanol-Gasoline Blends, Proceedings of the World Congress on Engineering 2014, Vol II, WCE 2014, Jully 2-4, London, U.K.

Silva E.A.A., Ochoa A.A.V., Hernandez J.R. (2019), Analysis and runner length optimization of the intake manifold of a 4 cylinder spark ignition engine. (Energy Conservation and Management 188 310-320).

Jason D'Mello A., Omkar S. Siras B. (2019), Performance analysis for 4-cylidnder intake manifold: an experimental and numerical approach. (International Engineering Research Journal Page No 917-922).

Banis K. (2018), Computational fluid dynamics pressure wave and flow rate analysis of intake runner design in internal combustion. (Research for Rural Development, Volume I). Ansys Fluent 2023 R2 Help Guide.