

FRI-LCR-P-1-CT(R)-03

SYSTEMATIC STUDY ON THE PH RANGES AND BUFFERING CAPACITY OF MIXTURES OF TRISODIUM ORTHOPHOSPHATE OR TETRASODIUM PYROPHOSPHATE WITH POTASSIUM DIHYDROGEN ORTHOPHOSPHATE

Assist. Prof. Mariya Georgieva, PhD

Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences,
E-mail: marigeorgiewa@gmail.com

Assist. Prof. Stephan Kozhukharov, PhD

Assoc. Prof. Christian Girginov, PhD

Assoc. Prof. Ani Stoilova, PhD

Department of Physics

University of Chemical Technology and Metallurgy – Sofia

E-mail: s.kozhukharov@uctm.edu

E-mail: girginov@uctm.edu

E-mail: ani_stoilova@uctm.edu

Abstract: This study presents valuable systematic data on the pH ranges and potential buffering properties of two phosphate systems composed of alkaline components and anhydrous potassium dihydrogen orthophosphate (KH_2PO_4) as the acidic counterpart. The alkaline components investigated were trisodium orthophosphate dodecahydrate ($Na_3PO_4 \cdot 12H_2O$) and tetrkasodium pyrophosphate decahydrate ($Na_4P_2O_7 \cdot 10H_2O$). The experimental work was carried out in two stages: (i) determination of pH ranges, and (ii) evaluation of buffering capacity. All measurements were performed in quintuplicate using a high-precision pH meter. The full set of results, including raw data, is provided in order to serve as a useful reference for future studies. Detailed descriptions of the procedures and calculations are also included to facilitate reproducibility and to guide further research in this field. Finally, the proposed phosphate mixtures are suggested as reliable pH buffers for technological and biotechnological applications, with particular relevance for metallic surface phosphating.

Keywords: $Na_3PO_4 \cdot 12H_2O$, $Na_4P_2O_7 \cdot 10H_2O$, KH_2PO_4 , pH ranges, Buffering Capacity.

INTRODUCTION

Painting and coating are common procedures in the production of metallic products, especially those intended for outdoor use. In this context, preliminary surface treatment is an indispensable step, regardless of the coating technology applied. Among the most widely used pretreatment methods is phosphating, which has long been established in industrial practice. Nevertheless, research continues to improve the conditions for its application. Numerous recent studies have focused on the phosphating of mild steel, exploring different bath compositions with practical potential for reliable coating formation (Liubenova et al., 2023; Rumyantseva et al., 2021; Ilieva et al., 2021; Fachikov et al., 2021).

More recently, phosphate sealing has emerged as an efficient approach for enhancing the protective properties of cerium oxide primer layers (Kozhukharov et al., 2024; Cherneva et al., 2025; Ma et al., 2025). In addition, reference tables of pH ranges for various phosphate buffer systems have been published, such as $Na_2HPO_4 \cdot 2H_2O$ - KH_2PO_4 , and $Na_2B_4O_7 \cdot 10H_2O$ - HCl (Portolesi et al., 2022). Building on this, systematic datasets have also been developed for $Na_2B_4O_7 \cdot 10H_2O$ - H_3BO_3 and $Na_2HPO_4 \cdot 2H_2O$ - KH_2PO_4 (Georgieva et al., 2025-1), as well as for $Na_2B_4O_7 \cdot 10H_2O$ - KH_2PO_4 and $Na_2HPO_4 \cdot 2H_2O$ - H_3BO_3 (Georgieva et al., 2025-2).

Phosphate solutions also find use in other surface treatment technologies, for example plasma electrolytic oxidation (López et al., 2025).

In this sense, the present work focuses on the characterization of the pH ranges and buffering properties of two phosphate mixtures of KH_2PO_4 with $Na_3PO_4 \cdot 12H_2O$ (assigned as M_1), or $Na_4P_2O_7 \cdot 10H_2O$ (M_2). Moreover, the experimental procedures are presented in detail, and the raw data are included, with the aim of providing a valuable resource for future investigations.

EXPERIMENTAL

The experimental work was carried out in two main stages: (i) determination of the pH ranges, and (ii) evaluation of the potential buffering capacity of neutral phosphate solutions.

Stage 1. Determination of pH ranges

The first stage was conducted through fivefold repetitive pH measurements of solutions prepared in nine different proportions. Measurements were performed using a HI 255 combined meter (Hanna Instruments) equipped with a HI 1131 commercial universal glass electrode.

Before the experiments, stock solutions of the investigated compounds were prepared, their compositions are listed in Table 1.

Table 1. Initial solutions used for the pH range determinations of the studied phosphate mixtures

Component type	Estimated solution content	Real content	Exact compound concentration (mol dm ⁻³)
First alkaline component	0.05 M solution of Na ₃ PO ₄ .12H ₂ O	19.3954 g of product (CAS-2570) with 98 %	52.066×10 ⁻³
Second alkaline component	0.05 M solution of Na ₄ P ₂ O ₇ .10H ₂ O	22.6196 g of product (CAS 13472-36-1) with 99 %.	51.222×10 ⁻³
Acidic component	0.05 M solution of KH ₂ PO ₄	6.8387 g of product (CAS 7778-77-0) with 99.5 % purity grade.	50.402×10 ⁻³

The pH range measurements were performed by mixing the alkaline and acidic stock solutions in defined proportions (described in the following section), followed by pH determination of the resulting mixtures. This procedure enabled monitoring of the pH variation upon gradual increase or decrease of the acidic component relative to the alkaline one.

The data were further analyzed using the volume ratios (VR₁ and VR₂) between the alkaline and acidic solutions, calculated according to Equation 1:

$$VR_1 = \frac{V_1}{V_1 + V_2} \quad \text{or} \quad VR_2 = \frac{V_2}{V_1 + V_2} , \quad (1)$$

where VR is the volume ratio of the used primary solutions; V₁ – volume of the alkaline solution (mL); V₂ – volume of the acidic solution (mL).

Stage 2. Determination of buffering capacity.

The buffering capacity of phosphate mixtures with nearly neutral pH was assessed by titration with standardized NaOH or HCl secondary solutions. Due to the well-known susceptibility of NaOH to absorb CO₂ from air, and the volatility of HCl, both solutions were standardized against a primary standard. Specifically, NaOH was standardized with oxalic acid, and the HCl solution was subsequently standardized against NaOH. This procedure ensured precise concentration determination of the secondary standard solutions, which were then used for titrations. All titrations were performed in fivefold repetition using the same pH meter described above. The resulting concentrations of the standardized titrants were 48.648×10⁻³ mol dm⁻³ of NaOH solution and 49.255×10⁻³ mol dm⁻³ of the HCl one.

The standardized NaOH and HCl solutions were subsequently used for the titration of mixtures of KH₂PO₄ with either Na₃PO₄.12H₂O (M₁) or Na₄P₂O₇.10H₂O (M₂) at nearly neutral pH. The required volume correlations between the alkaline and acidic components for obtaining neutral mixtures were derived from the pH range determinations described in the previous section. Afterwards, aliquots of 25 mL from these mixtures were subjected to titrations with either the standardized NaOH or HCl solutions.

The buffering capacity (BC) was calculated from the titration data according to Equation 2:

$$BC = \frac{MV_{ss}}{\Delta(pH)Vb_{uff}} \cdot \frac{1}{n}, \quad (2)$$

where BC is the buffering capacity (mol pH⁻¹), MV_{ss} is the amount (in moles) of the added standard solution of known alkaline or acidic compound. In the present case, the data for the standard solution molarity are shown in Table 1, whereas, their volumes, expended for the titrations are summarized in Tables 5 and 6. $\Delta(pH)$ is the pH change (dimensionless), in the present case, its value is assumed to be unit. V_{buff} is the volume of the buffer solution submitted to titration (25 mL). The coefficient ($1/n$) is attributed to the compound, whose solution is submitted to pH measurement. If it is alkaline, then n = number of OH⁻ anions from any compound molecule. If it is acidic, then n = number of H₃O⁺ (i.e., H⁺ cations) moieties from each molecule of the dissolved compound. In both cases of NaOH and HCl, its value is: $1/n = 1$.

RESULTS AND DISCUSSION

Determination of the pH ranges

The pH range determinations were carried out by fivefold pH measurements using the precision pH meter described in the experimental section. For each system (M₁ and M₂), nine mixtures were prepared by gradually altering the volume ratios between the alkaline and acidic components. The collected data are summarized in Table 2 for system M₁ and in Table 3 for system M₂.

Table 2. Volume ratios and resulting pH values for the M₁ system

Components (mL)		Volume ratios		Raw data acquired from each measurement					Avg. Val.	St. Dev.
Alkaline	Acidic	VR ₁	VR ₂	pH ₁	pH ₂	pH ₃	pH ₄	pH ₅		
Na ₃ PO ₄ .12H ₂ O	KH ₂ PO ₄	VR ₁	VR ₂	pH ₁	pH ₂	pH ₃	pH ₄	pH ₅	12.002	0.006
50	0	1.00	0.00	12.008	12.007	12.001	11.998	11.995	10.512	0.021
40	10	0.80	0.20	10.535	10.531	10.510	10.497	10.487	8.826	0.008
30	10	0.75	0.25	8.840	8.827	8.820	8.819	8.824	7.673	0.002
30	20	0.60	0.40	7.675	7.672	7.670	7.673	7.674	7.343	0.006
20	20	0.50	0.50	7.352	7.343	7.343	7.338	7.337	7.066	0.004
20	30	0.40	0.60	7.069	7.068	7.068	7.063	7.061	6.716	0.004
10	30	0.25	0.75	6.720	6.718	6.719	6.712	6.711	6.572	0.008
10	40	0.20	0.80	6.585	6.574	6.570	6.566	6.564	4.571	0.008
0	50	0.00	1.00	4.583	4.573	4.572	4.566	4.562		

Table 3. Volume ratios and resulting pH values for the M₂ system

Components (mL)		Volume ratios		Raw data acquired from each measurement					Avg. Val.	St. Dev.
Alkaline	Acidic	VR ₁	VR ₂	pH ₁	pH ₂	pH ₃	pH ₄	pH ₅		
Na ₄ P ₂ O ₇ .10H ₂ O	KH ₂ PO ₄	VR ₁	VR ₂	pH ₁	pH ₂	pH ₃	pH ₄	pH ₅	10.793	0.003
50	0	1.00	0.00	10.794	10.797	10.795	10.792	10.788	9.316	0.005
40	10	0.80	0.20	9.315	9.311	9.313	9.320	9.322	9.145	0.008
30	10	0.75	0.25	9.135	9.141	9.144	9.149	9.157	8.562	0.012
30	20	0.60	0.40	8.555	8.546	8.567	8.569	8.575	8.012	0.007
20	20	0.50	0.50	8.003	8.008	8.014	8.017	8.020	7.443	0.005
20	30	0.40	0.60	7.438	7.438	7.445	7.446	7.449	6.816	0.009
10	30	0.25	0.75	6.830	6.821	6.814	6.807	6.809	6.651	0.004
10	40	0.20	0.80	6.657	6.653	6.648	6.647	6.651	4.571	0.008
0	50	0.00	1.00	4.583	4.573	4.572	4.566	4.562		

The data in Tables 2 and 3 were visualized in order to define accurately the most suitable volume ratio (VR) ranges for achieving neutral pH. The respective $pH = f(VR)$ plots are shown in Figure 1.

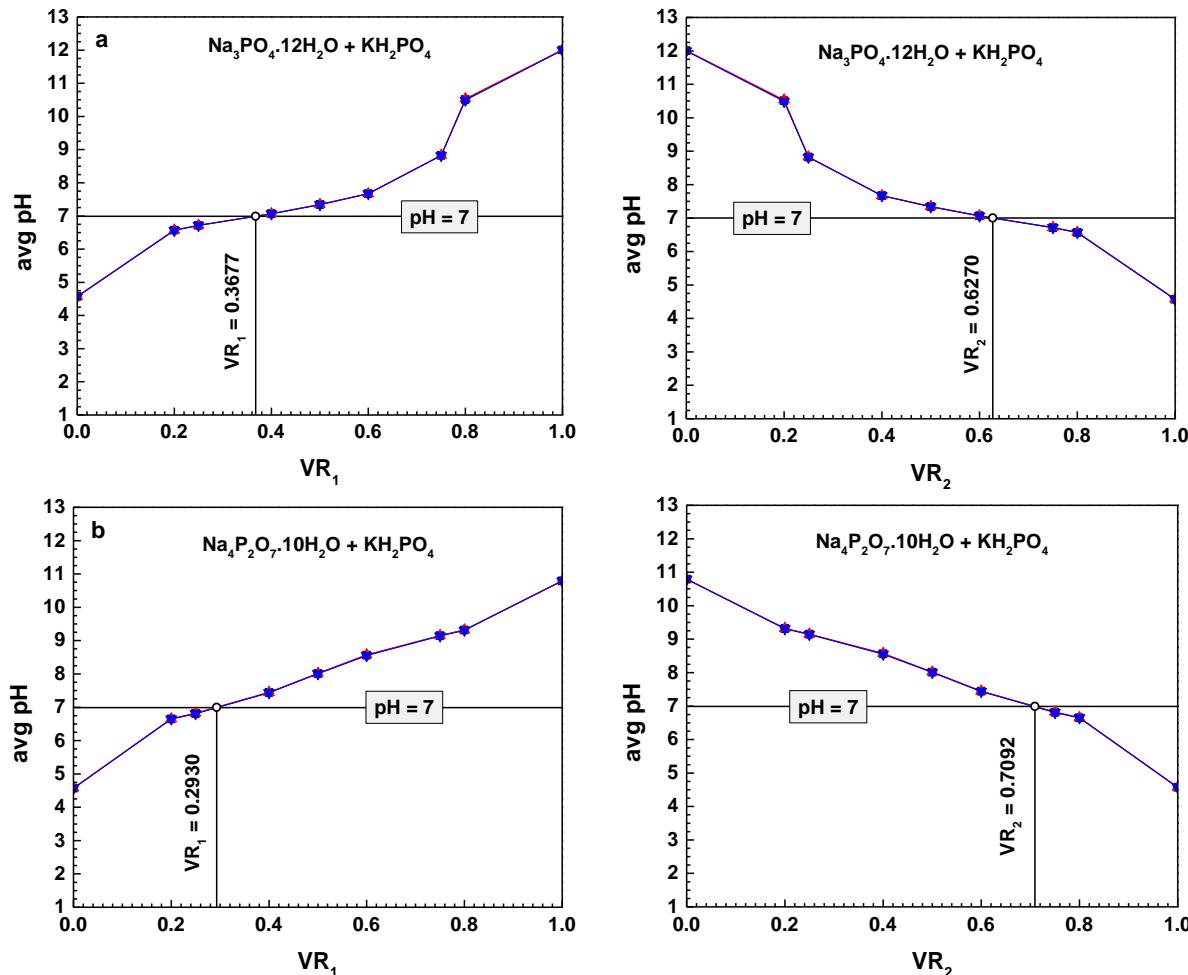


Fig. 1. Correlations between the volume ratios of the obtained mixtures and the resulting pH values: a) system M₁, b) system M₂

Figure 1a shows that neutral M₁ solutions can be obtained within relatively broad VR intervals. For VR₁, the neutral zone lies between points P₁ and P₃, corresponding to VR₁ = 0.31–0.45. In practice, this means that mixing 31–45 mL of Na₃PO₄·12H₂O solution with KH₂PO₄ up to 100 mL yields a neutral pH. In turn, regarding VR₂ neutral conditions were observed between P₄ and P₆, where the acidic component volume ranged between 52 mL and 71 mL, complemented by alkaline solution up to 100 mL. In both VR₁ and VR₂ cases, preparation of neutral M₁ solutions required a slight predominance of the acidic component.

Additionally, further pH decreases were observed in the VR ranges 0.75–0.80 (VR₁) and 0.20–0.25 (VR₂). These secondary effects, though noteworthy, lie outside the main scope of this study and will not be discussed in detail here.

Figure 1b presents the results for M₂, where neutral pH was reached within narrower intervals compared to M₁. For VR₁, neutrality was observed between P₇ and P₉ (VR₁ = 0.26–0.33), corresponding to approximately 30 mL Na₄P₂O₇·10H₂O mixed with 70 mL KH₂PO₄ (P₈). For VR₂, neutrality was achieved between P₁₀ and P₁₂ (KH₂PO₄ volumes of 63–75 mL), complemented with alkaline solution (Na₄P₂O₇·10H₂O) up to 100 mL. The most balanced neutral point was found at P₁₁, corresponding to 70 mL of 0.05 M KH₂PO₄ and 30 mL of 0.05 M Na₄P₂O₇·10H₂O.

It should be emphasized that, in practice, the pH of phosphate mixtures should be fine-tuned on the following day. This is due to unavoidable small deviations in the initial solution concentrations, as well as external factors such as the pH of distilled water (which may vary depending on the technical state of the distiller) and ambient temperature.

Definition of the potential buffering capacity of neutral phosphate solutions

It was performed by fivefold titration of probes (25 mL) of relatively neutral mixtures, by the secondary standard solutions, described in the experimental part. The respective data, acquired from these titrations are provided in Tables 5 and 6.

The buffering capacity was evaluated by fivefold titration of 25 mL probes of relatively neutral mixtures using the secondary standard solutions described in the experimental section. The corresponding experimental data are presented in Tables 5 and 6.

Table 5. Results of the potential buffering capacity of neutral $\text{Na}_3\text{PO}_4 \cdot 12\text{H}_2\text{O} / \text{KH}_2\text{PO}_4$

Number	Expended NaOH (mL)	pH before titration	pH after titration	Expended HCl (mL)	pH before titration	pH after titration
I	8.80	7.076	8.067	15.55	6.994	5.999
II	8.75	7.074	8.066	15.50	6.995	6.002
III	8.70	7.082	8.064	15.55	6.994	6.007
IV	8.70	7.064	8.047	15.15	7.012	6.056
V	8.75	7.068	8.067	15.00	7.047	6.035
Avg. val.	8.74 ± 0.04	7.074 ± 0.007	8.062 ± 0.009	15.35 ± 0.26	7.008 ± 0.023	6.020 ± 0.025

Table 6. Results of the potential buffering capacity of neutral $\text{Na}_4\text{P}_4\text{O}_7 \cdot 10\text{H}_2\text{O} / \text{KH}_2\text{PO}_4$

Number	Expended NaOH (mL)	pH before titration	pH after titration	Expended HCl (mL)	pH before titration	pH after titration
I	8.35	7.003	8.004	13.55	7.042	6.061
II	8.25	7.084	8.070	13.55	7.015	6.023
III	8.30	7.071	8.065	13.40	7.056	6.057
IV	8.25	7.069	8.070	13.80	7.006	6.009
V	8.30	7.065	8.074	13.60	7.010	6.028
Avg. val.	8.29 ± 0.04	7.058 ± 0.032	8.057 ± 0.03	13.58 ± 0.14	7.026 ± 0.022	6.036 ± 0.023

The data in both tables show that the volumes of diluted NaOH necessary for titration of 25 mL probes converge to 8.7 mL for M_1 and 8.3 mL for M_2 . In contrast, the volumes of the respective HCl standard solutions required to change the pH of the examined potential buffer solutions by one unit are nearly twice as high as those of NaOH. Specifically, 15.35 mL and 13.58 mL of the HCl standard solution were expended for titration of 25 mL probes of M_1 and M_2 , respectively.

Based on these measurements, the buffering capacities were calculated using Equation 2. The calculations for the M_1 system, composed of $\text{Na}_3\text{PO}_4 \cdot 12\text{H}_2\text{O}$ and KH_2PO_4 , are shown below (Eqs. 3 and 4):

$$BC_{M_1}^{NaOH} = \frac{48.648 \times 10^{-3} \times 8.74}{(|7.074 - 8.062|) \times 25} = 17.21 \times 10^{-3} \text{ mol pH}^{-1} \quad (3)$$

$$BC_{M_1}^{HCl} = \frac{49.255 \times 10^{-3} \times 15.35}{(|7.008 - 6.020|) \times 25} = 30.61 \times 10^{-3} \text{ mol pH}^{-1} \quad (4)$$

In turn, the respective calculations for the M₂ system, composed of Na₄P₂O₇.10H₂O and KH₂PO₄ are given below (Eqs. 5 and 6):

$$BC_{M_2}^{NaOH} = \frac{48.648 \times 10^{-3} \times 8.29}{(|7.058 - 8.057|) \times 25} = 16.15 \times 10^{-3} \text{ mol pH}^{-1} \quad (5)$$

$$BC_{M_2}^{HCl} = \frac{49.255 \times 10^{-3} \times 13.58}{(|7.026 - 6.036|) \times 25} = 27.03 \times 10^{-3} \text{ mol pH}^{-1} \quad (6)$$

The results reveal that the buffering capacity values are quite similar for both systems. Besides, it appears that the system M₁ (Na₃PO₄.12H₂O + KH₂PO₄) shows slightly higher stability in alkaline media, whereas the system M₂ (Na₄P₂O₇.10H₂O + KH₂PO₄) exhibits better stability in acidic media. However, these differences are minor, and the buffering capacities of both systems may be considered essentially equivalent.

Finally, comparison with results obtained from titrations of a commercial buffer (Georgieva, M. et al., 2025, both parts) indicates that these systems can be reliably used as buffers for various technological and biotechnological processes, as well as phosphorus sources for metal phosphating solutions.

CONCLUSIONS

This paper presents valuable data on the pH ranges and buffering properties of two phosphate systems: M₁ (Na₃PO₄.12H₂O and KH₂PO₄) and M₂ (Na₄P₂O₇.10H₂O and KH₂PO₄). The experimental procedures, including direct measurements and raw data, are described in sufficient detail to enable replication and application in further research. The results identify the possible pH ranges and suitable volume proportions of the acidic and alkaline components required for preparing neutral M₁ and M₂ mixtures.

The key conclusion is that both systems, based on Na₃PO₄.12H₂O or Na₄P₂O₇.10H₂O mixed with KH₂PO₄ can be used as reliable pH buffers in technological and biotechnological processes, with particular relevance for the phosphating of metallic surfaces.

Acknowledgements: The present work was carried out within the framework of Project КП-06-H89/8 (2024) "Synthesis and Characterization of Advanced Doped Cerium Oxide Nanomaterials". The authors gratefully acknowledge the support of INFRAMAT for providing and maintaining some of the equipment used in this study.

REFERENCES

Cherneva, S., Andreeva, R. & Stoychev, D. (2025). Mechanical Properties and Corrosion Resistance of Thin Ceria and Phosphate Mono- and Multilayers Deposited on Technically Pure Al 1050, *Materials*, 18(2), 424.

Fachikov, L. B., Ilieva, G. P., & Ivanova, D. I. (2021). Electrochemically Phosphating of Aluminum Surfaces in MoO₂-4-Containing Solutions, *Protection of Metals and Physical Chemistry of Surfaces*, 57, 796-805. <https://doi.org/10.1134/S2070205121040092>

Georgieva, M., Kozhukharov, S., Girginov, C., Lilova, V. (2025). Determination of the pH Range of Potential Borate/Phosphate Buffering Solutions. Part 1. Monocomponent Systems, *NATO Science for Peace and Security Series B: Physics and Biophysics* 115-129 https://doi.org/10.1007/978-94-024-2316-7_8

Georgieva, M., Kozhukharov, S., Girginov, C., Lilova, V. (2025). Determination of the pH Range of Potential Borate/Phosphate Buffering Solutions. Part 2. Mixed Systems, *NATO Science for Peace and Security Series B: Physics and Biophysics* 131-145 https://doi.org/10.1007/978-94-024-2316-7_9

Ilieva, G. P., Ivanova, D. I., & Fachikov, L. B. (2021). Characterization of containing molybdenum phosphate coatings electrochemically formed on aluminum surfaces, *J. Chem. Technol. Metall.* 56(2), 353–359.

Kozhukharov, S., Girginov, Ch., Portolesi, S., Tsanев, A. & Lilova, V. (2024). Sealing of cerium oxide coating primers on anodized AA2024-T3 alloy by boiling in Lourier buffers, *J. Electrochem. Sci. Eng.* 14(5), 559-582.

Liubenova, T. L., & Fachikova, D. I. (2023). Application of organic coatings on amorphous phosphated zinc surfaces, *J. Chem. Technol. Metall.* 58, 6, 1057 – 1064.

López, G. D., Williams, P. L., LLorca, J., & Echeverry-Rendón, M. (2025). Optimization of phosphate-based plasma electrolytic oxidation coatings on commercially pure zinc, *Surf. Int.* 72, 107243

Ma, Q., Ma, Y., Zhang, D., Yan, J., Chen, L., Zhou, H. & Chen, J. (2025). Trivalent cerium-doped zinc phosphate composite coating: A novel solution to the wear-corrosion coupling issue, *Surf. Coat. Technol.* 509, 132213.

Portolesi, S., Kozhukharov, S., Haralanova, T. & Girginov, Ch. (2022). Acidity adjustment of the solutions for coating deposition and further sealing by Lourier buffers, *Proceedings of University of Ruse (Bulgaria)*, 61, 10.1. 68-73.

Rumyantseva, V., Konovalova, V., & Narmaniya, B. (2021). Modified phosphate coatings applied to steel by cold method, *Journal of Physics: Conference Series*, 2131(429), Art. No: 042027.