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Abstract: This material discusses a methodology for non-destructive testing of soil density using ultrasonic measurement. 

The measurements were carried out with a material thickness gauge in which sound speeds of 1000 m/s, 1500 m/s and 2000 m/s 

were set during the test. The tested field is with black soil and shows good results at 2000 m/s, and it has been confirmed that 

humidity strongly affects the possibility of measurement. The obtained results compared with a vertical cone penetrometer show 

99.99% dependence and the standard error is 1.24 kN. 
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ВЪВЕДЕНИЕ 

Почвата е жизнена среда от, която зависи множество екосистеми (Greiner et al., 2017). За 

контрол на средата освен измерването на микро и макро елементи (Foth et al., 1988) е необходимо и 

измерването на нейната плътност. Плътността на почвата е ключов параметър в прецизното 

земеделие. От нея зависи възможността за развитието на земеделските култури.  

Измерване на плътността представлява трудоемък процес, като стандартно отчита дискретни 

стойности. Стандартно тя се измерва с вертикален конусен пенетрометър (ASAE, 2002). Той дава 

точни резултати заради контактния метод на измерване. Изчисляване на съпротивлението 

необходимо за проникване (пенетрация) на конус със стандартен размер и необходимата сила за 

забиването му на фиксирана дълбочина. Методът е трудоемък за създаване на цялостна карта на 

изследваното поле. 

Подход за измерване почвената плътност на базата на нейната електропроводимост е 

използван при създаване на сензор за измерване в реално време разработен от (Titan, 2025) 

Измерването определя почвената текстура, соленост, органично вещество, съдържание на влага и 

дълбочината на горния почвен слой. Този тип измерване е подходящ за създаване на пълна карта на 

полето при преминаване. Измерването е изисква големи ресурси както механичното тестване. Също 

не променя почвения слой при измерване, което причинява по малки екологични въздействия. 

Почвената диагностика е възможно да се извърши с акустични сензори. Те имат потенциала 

да анализират почвената плътност в реално време и е възможно създаване на цялостна непрекъсната 

карта (Michlmayr et al., 2012; Lacoste et al., 2013). Измерването е възможно да се осъществи 

посредством високочестотни сигнали (20–500 kHz), преди те да отслабят, използването на пиезо-

електрически сензори в почвата увеличава радиусът на наблюдение. Честотите са над звуковия 

диапазон и не се възприемат от човека. С увеличаване на честотата се намалява затихването и е 

възможно да се осъществи измерване на по голямо разстояние. Методиката представлява 

безразрушителен контрол на средата. 

Възможно е сензора да се мултиплицира за получаване на по голяма ширина на засичане и 

намаляване броя преминавания за цялостна карта. 

Целта на изследването е да се тества методика за ултразвуково измерване на почвената 

плътност. За постигане на целта са формирани следните задачи: 1. Избиране на подходящ сензор с 

който да се осъществи теста. 2. Да се проведат полеви изследвания на опитното поле на ДТК – 

Добрич. 

 
79 Докладът е представен пред секция „Природо-математически и технически науки” на 64-тата научна конференция на 

Русенския университет „Ангел Кънчев“ и Съюза на учените-Русе на 17 октомври 2025 година с оригинално заглавие на 

български език: ИЗМЕРВАНЕ НА ПОЧВЕНА ПЛЪТНОСТ ПОСРЕДСТВОМ УЛТРАЗВУК. 
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МАТЕРИАЛИ И МЕТОДИ 

Звуковите вълни се разпространяват с крайна скорост, като тя е се променя при различните 

плътности. Скоростта на звука във въздуха при температура 0 °С е 331 m/s. С повишаване на 

температурата тя расте. Например при температура 15 °С е 340 m/s. Скоростта на звука е 

пропорционална на квадратния корен на абсолютната температура на газа. Много съществено е че 

скоростта на звука не зависи от честотата. Ако съществуваше подобна зависимост, тя би направила 

невъзможно предаване на говор и музика, тъй като честотния състав на постъпващите в ухото 

звукови вълни би се изменял в зависимост от разстоянието. Освен скоростта към характеристиките 

на хармоничните звукови вълни спадат: амплитудата А, дължината на вълната λ, периодът на 

звуковата вълна Т, честотата на трептенията ν. Зависимостите между тях са както при механичните 

вълни:  

ν = 1/Т,         (1) 

λ = u/ν.         (2) 

Интензитетът I се определя от енергията, пренесена от звуковата вълна за единица време през 

единица площ, разположена перпендикулярно на посоката на разпространение на вълната  

I = E/St.        (3) 

Измерването на плътността на почвата се извършва с акустични емисии (АЕ). Те 

представляват освобождаване на еластична енергия излъчена от говорител на сензора. АЕ пътува 

през почвения агрегат като еластична вълна до достигане от пиезо-електрически сензори които я 

регистрират. Разстоянията изминати от тези вълни генерирани от пиезо излъчвател зави от 

механичните свойства на обекта през който преминават и степента на насищане (в различните 

компоненти), които допринасят за затихване на сигнала. При наличие на по голямо количество 

въздух в почвения агрегат типичната AE има малък обхват (Oelze et al., 2002). При преминаване на 

АЕ през почва амплитудата на вълната А може да бъде оценена по формулата: 

      A = a
2𝑍3

𝑍1+𝑍3
 𝑒−𝛼(𝑓𝑥𝑦)                                       (4) 

Където индексите 1 и 3 отговарят на вода и въздух: където z = рс - характеристичен импеданс 

на средата (р – плътността на средата; с - скоростта на звука); α3(f) - коефициент на отслабване на 

звука за въздух, зависим от честота f; X - разстояние от границата на разделяне на средите до 

приемния преобразувател (Geiger et al., 2003). 

При границата за чувствителността на приемащата апаратура по амплитуда на изместването 

от трептене е обозначена с Ап, тогава разстоянието за засичане на АЕ е: 

D = 
1

𝛼3(𝑓)
 1n (

𝑎

𝐴п
 

2𝑍3

𝑍1+𝑍3
)  [cm]                     (5) 

Увеличаването на разстоянието може да се получи, намалявайки α3(f), което се постига с 

понижаване на работната честота на измерванията. 

Когато приемо-преобразувателя контактува с изследвания обект. Известно е че за металната 

среда поради z2 ≫ z3, α2(f) ≪ α3(f) разстоянието от източника се увеличава. Приемайки за: z1 

=15.105 (вода); z2 = 45,2.105 (стомана); z3 = 42 (въздух); α2 =2.10-3, α3 = 5.10-2 cm (за честота f = 0,5 

MHz и приемайки α/Ап = 0,3.106 (това би осигурило теоретично разстояние на приемане от 1 m), с 

така приетите стойности се получава Dk/D ~ 70 cm (Merdjanov et al., 2017). 

Скоростта на звука в почвата зависи от вида на почвата и нейните свойства, като плътност, 

влажност и еластичност. Обикновено скоростта на звука в почвата е по-висока от тази във въздуха, 

но по-ниска от тази в твърди материали като метал. 

Скоростта на звука в зависимост от типът почва се изменя както следва: 

• Пясъчна почва - Скоростта на звука може да бъде около 500-1000 m/s. 

• Глинеста почва - Скоростта на звука може да бъде около 1000-1800 m/s. 

• Скални почви - Скоростта на звука може да надвишава 2000 m/s. 

За по-точна информация е необходимо да се вземат предвид специфичните свойства на 

конкретната почва. Поради факта че почвата е нехомогенна смес, тя съдържа различно количество 

глина, пясък, вода и твърди вещества (камъни) в различно съотношение поради което по скоростта 

е силно променлива. Почвения агрегат може силно да варира като състав пространствено, което би 
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могло да доведе до голяма променливост на скоростта на звука. Тя варира в широки граници, от 

приблизително 86 до 260 метра в секунда, и може да бъде повлияна при преминаването на звука 

през водни молекули или твърди предмети, като имаме постоянна промяна на скоростта на 

звуковата вълна на микрониво. Този диапазон обикновено е по-бавен от скоростта на звука във 

въздуха (около 343 м/с) и значително по-бавен, отколкото в много твърди материали като стомана. 

Уредът с който се извършва измерването е LS213 (Bioevibul, 2025) ултразвуков дебеломер 

(0,8~350MM), показан на фиг. 1. 

 
Фиг. 1. LS213 ултразвуков дебеломер (Bioevibul, 2025). 

 

Той има характеристики представени в таблица 1. Уредът е предназначен за измерване на 

дебелината на метални материали (стомана, желязо, алуминий, мед) и неметални предмети 

(керамика, пластмаси и стъкло), както и на всякакви други добри ултразвукови проводници. 

Таблица 1. Основни характеристики на LS213 

Диапазон на измерване 0,8 … 350 мм  

Резолюция 08 - 100 мм: 0,01 мм 

100 - 350 мм: 0,1 мм 

Точност 0.8 - 10mm: ± 0.05mm 

10 - 350 mm: ± 0,5% H, H е стандартната стойност 

Скоростта  на звука Диапазон 1000 ~ 9999 m/s 

Сонда 5 MHz Ø10 двукристална сонда 

  

Методът на измерване представлява измерване на дискретни стойности, като в точките на 

измерване след получаване на резултата е направен тест на плътността с пенетрометър. Тестовете 

са проведени с няколко различни честоти на звука. Избрани са 1000 m/s, 1500 m/s и 2000 m/s, който 

са въведени в менюто „Ръчно въвеждане“. Настройките са показани на фиг. 2. 

 
Фиг. 2. Въведените честоти в LS213 

Всяка една от честотите е тествана за определяне плътността (в случая показана като дебелина) 

на почвен тип почва.  
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Необходимо е на се извърши тариране заради методът на измерване на уреда. То ни показва 

дебелина на слой, която трябва да бъде съотнесена към плътност. За целта е направено тестово 

измерване на зони предварително измерени с пенетрометър. 

 

 

РЕЗУЛТАТИ  

Извършеното тариране при честота 2000 m/s е представено в табл. 2. Поради показанията на 

уреда в дебелина на слоя е направен тест на плътността в точката на измерване с пенетрометър. 

Таблица 2. Показания при тариране 

№ 1 2 3 4 5 

LS213 [cm] 17.21 19.01 23.66 18.89 17.96 

Пенетрометър [kN] 275.8 310.3 379.2 300.5 287.3 

 

Средна стойност получена от тарирането е 16.056 cm за kN. По този коефициент е изчислена 

почвената плътност представена в таблици 3 и 5. 

Почвата в тестовото поле е чернозем, която има голямо съдържание на глина. Влажността в 

момента на измерване е 32%. Измерванията са проведени през 1 м по ширина и 1 м по дължина 

върху полето. В избраните тестови точки е проведено измерване с уреда LS213 при скорост на звука 

2000 m/s, резултатите са показани в табл. 3 

Таблица 3. Показания на LS213 в тестовите точки [kN] при 2000 m/s 

 1 2 3 

1 274.1 309.3 380.1 

2 345.3 410.9 619.1 

3 619.3 482.6 621.4 

4 619.0 622.2 655.0 

5 552.5 689.5 481.9 

В същите точки, където е проведено ултразвуковото измерване е направено и измерване с 

вертикалния конусен пенетрометър. Резултатите в kN са показани в табл. 4. 

Таблица 4. Плътност на тестовия участък, в kN измерена с пенетрометър 

 1 2 3 

1 275.8 310.3 379.2 

2 344.7 413.7 620.5 

3 620.5 482.6 620.5 

4 620.5 620.5 655.0 

5 551.6 689.5 482.6 

Получените резултати при скорост на звука 1500 m/s в опитното поле е представено в таблица 

5. Измерванията са проведени в точките на измерване с 2000 m/s за потвърждение на резултата. 

Таблица 5. Показания на LS213 в тестовите точки [kN] 1500 m/s.  

 1 2 3 

1 - - - 

2 - 400.8 631.5 

3 607.7 497.1 612.3 

4 623.9 602.4 655.0 

5 550.4 681.3 - 

При 1500 m/s за тествания тип почва уредът в някой от тестовите точки не измери стойности. 

Има отклонение от получените стойности в таблица 3. Получените разлики са в диапазона от -3.29% 

до 2.92 %. Тези отклонения позволяват да приемем че точността е висока.  
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При скорост от 1000 m/s уреда не отчете резултат. Това е поради състава на почвата в 

тестваното поле. 

Измерване с ултразвуков уред при влажност на почвата от 8% при температура на въздъхна 

34°C не даде резултати и в трите избрани диапазона. Уплътнената почва има голяма твърдост, което 

би трябвало да повиши скоростта на звука през нея но това е при еднородни материали. Поради 

нехомогенния състав на почвения агрегат и наличието на въздух между микрочастиците имаме 

много голямо затихване от преминаването на звука през различните по плодност среди.  

 Анализ на зависимостите посредством линеен регресионен анализ между стойностите 

получени от теста с пенетрометъра (Y) и стойностите получени при 2000 m/s е  (X) показан в таблица 

6 и ANOVA на регресията в таблица 7. 

Таблица 6. Статистика на регресията 

Multiple R 0.999998 

R Square 0.999995 

Adjusted R Square -1.07692 

Standard Error 1.239804 

Таблица 7. ANOVA 

  df SS MS F 

Regression 14 4129629 294973.5 2686614 

Residual 13 19.98247 1.537113  

Total 27 4129649     

Получената зависимост показва 99.99% зависимост на резултатите, което е много голям 

коефициент на сигурност. Стандартната грешка е 1.24 kN отклонение от получените резултати. 

Получената средна плътност за тестовото поле е 512.5 kN. 

Лимитиращ фактор при методиката е че за този тип изследване е необходимо по голям процент 

на влажност.  Резултатите от методиката са изследвани само на едно опитно поле в неговите 

специфични условия, който предстой да се тестват в няколко полета за потвърждение на методиката. 

 

ЗАКЛЮЧЕНИЕ  

От проведения експеримент за измерване на почвена плътност посредством ултразвук се 

получиха следните изводи: 

1. Проведените експерименти със  скорост на звука 2000 m/s при измерване при чернозем при 

сравнението си със стандартен конусен пенетрометър показват 99.99% зависимост на 

резултатите. Това потвърждава приложимостта на метода. 

2. Методиката е метод за безразрушителен контрол на почвената плътност. Тя позволява 

лесно и бързо тестване на големи зони посредством серия от измерване. 
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